1,173 research outputs found
Cultivating diversity and food quality. Proceedings of Diversifood EU Forum, Brussels, 11 April 2018
To tackle this issue, Diversifood team organised a forum with policy makers and stakeholders on the 11th of April 2018, in Brussels.
Diversifood’s aim is to share results and key lessons including new approaches for the management of cultivated biodiversity, for plant breeding for sustainable farming systems, and new relationships among actors of food systems.
In the afternoon, there was time for discussion, knowledge sharing, collecting feedback and extending current policies to include cultivating diversity and food quality (for FP9, CAP 2020, The outputs of this workshop will feed Diversifood’s final recommendations.
The forum was kindly hosted by the European Committee of the Regions (Rue Belliard/Belliardstraat 101, 1040 Brussels)
Fluctuating-friction molecular motors
We show that the correlated stochastic fluctuation of the friction
coefficient can give rise to long-range directional motion of a particle
undergoing Brownian random walk in a constant periodic energy potential
landscape. The occurrence of this motion requires the presence of two
additional independent bodies interacting with the particle via friction and
via the energy potential, respectively, which can move relative to each other.
Such three-body system generalizes the classical Brownian ratchet mechanism,
which requires only two interacting bodies. In particular, we describe a simple
two-level model of fluctuating-friction molecular motor that can be solved
analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt.
Phys. Mater. vol. 9, 157] this model has been first applied to understanding
the fundamental mechanism of the photoinduced reorientation of dye-doped liquid
crystals. Applications of the same idea to other fields such as molecular
biology and nanotechnology can however be envisioned. As an example, in this
paper we work out a model of the actomyosin system based on the
fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter
(http://www.iop.org/Journals/JPhysCM
Fragmentation pathways of nanofractal structures on surface
We present a detailed systematical theoretical analysis of the post-growth
processes occurring in nanofractals grown on surface. For this study we
developed a method which accounts for the internal dynamics of particles in a
fractal. We demonstrate that particle diffusion and detachment controls the
shape of the emerging stable islands on surface. We consider different
scenarios of fractal post-growth relaxation and analyze the time evolution of
the island's morphology. The results of our calculations are compared with
available experimental observations, and experiments in which the post-growth
relaxation of deposited nanostructures can be probed are suggested.Comment: 34 pages, 11 figure
Atomic scale engines: Cars and wheels
We introduce a new approach to build microscopic engines on the atomic scale
that move translationally or rotationally and can perform useful functions such
as pulling of a cargo. Characteristic of these engines is the possibility to
determine dynamically the directionality of the motion. The approach is based
on the transformation of the fed energy to directed motion through a dynamical
competition between the intrinsic lengths of the moving object and the
supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print
Genomic determinants of Furin cleavage in diverse European SARS-related bat coronaviruses
The furin cleavage site (FCS) in SARS-CoV-2 is unique within the Severe acute respiratory syndrome–related coronavirus (SrC) species. We re-assessed diverse SrC from European horseshoe bats and analyzed the spike-encoding genomic region harboring the FCS in SARS-CoV-2. We reveal molecular features in SrC such as purine richness and RNA secondary structures that resemble those required for FCS acquisition in avian influenza viruses. We discuss the potential acquisition of FCS through molecular mechanisms such as nucleotide substitution, insertion, or recombination, and show that a single nucleotide exchange in two European bat-associated SrC may suffice to enable furin cleavage. Furthermore, we show that FCS occurrence is variable in bat- and rodent-borne counterparts of human coronaviruses. Our results suggest that furin cleavage sites can be acquired in SrC via conserved molecular mechanisms known in other reservoir-bound RNA viruses and thus support a natural origin of SARS-CoV-2
The spin-orbit interaction as a source of new spectral and transport properties in quasi-one-dimensional systems
We present an exact theoretical study of the effect of the spin-orbit (SO)
interaction on the band structure and low temperature transport in long
quasi-one-dimensional electron systems patterned in two-dimensional electron
gases in zero and weak magnetic fields. We reveal the manifestations of the SO
interaction which cannot in principle be observed in higher dimensional
systems.Comment: 5 pages including 5 figures; RevTeX; to appear in Phys.Rev.B (Rapid
Communications
Localized states in strong magnetic field: resonant scattering and the Dicke effect
We study the energy spectrum of a system of localized states coupled to a 2D
electron gas in strong magnetic field. If the energy levels of localized states
are close to the electron energy in the plane, the system exhibits a kind of
collective behavior analogous to the Dicke effect in optics. The latter
manifests itself in ``trapping'' of electronic states by localized states. At
the same time, the electronic density of states develops a gap near the
resonance. The gap and the trapping of states appear to be complementary and
reflect an intimate relation between the resonant scattering and the Dicke
effect. We reveal this relation by presenting the exact solution of the problem
for the lowest Landau level. In particular, we show that in the absence of
disorder the system undergoes a phase transition at some critical concentration
of localized states.Comment: 28 pages + 9 fig
Terahertz radiation driven chiral edge currents in graphene
We observe photocurrents induced in single layer graphene samples by
illumination of the graphene edges with circularly polarized terahertz
radiation at normal incidence. The photocurrent flows along the sample edges
and forms a vortex. Its winding direction reverses by switching the light
helicity from left- to right-handed. We demonstrate that the photocurrent stems
from the sample edges, which reduce the spatial symmetry and result in an
asymmetric scattering of carriers driven by the radiation electric field. The
developed theory is in a good agreement with the experiment. We show that the
edge photocurrents can be applied for determination of the conductivity type
and the momentum scattering time of the charge carriers in the graphene edge
vicinity.Comment: 4 pages, 4 figure, additional Supplemental Material (3 pages, 1
figure
- …