31 research outputs found

    Integration of Metabolomics and In Vitro Metabolism Assays for Investigating the Stereoselective Transformation of Triadimefon in Rainbow Trout

    Get PDF
    Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB-172 column on a GC-MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S-(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R-(-) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi-toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat-toxic pair of enantiomers (known as ‘‘Diastereomer A’’) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of ‘‘Diastereomer A’’. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers

    SAGE Analysis of Transcriptome Responses in Arabidopsis Roots Exposed to 2,4,6-Trinitrotoluene

    No full text
    Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were identified overall. The second most highly induced tag (27-fold increase) represented a glutathione S-transferase. Cytochrome P450 enzymes, as well as an ABC transporter and a probable nitroreductase, were highly induced by TNT exposure. Analyses also revealed an oxidative stress response upon TNT exposure. Although some increases were anticipated in light of current models for xenobiotic metabolism in plants, evidence for unsuspected conjugation pathways was also noted. Identifying transcriptome-level responses to TNT exposure will better define the metabolic pathways plants use to detoxify this xenobiotic compound, which should help improve phytoremediation strategies directed at TNT and other nitroaromatic compounds

    Fishy aroma of social status: urinary chemo-signalling of territoriality in male fathead minnows (Pimephales promelas).

    Get PDF
    Chemical structures of several urinary reproductive pheromones in fish have been identified, and their role in the chemical communication of reproductive condition is well characterized. On the contrary, the role of chemical communication in signalling of social/territorial status in fish is poorly understood. Fathead minnows are an example of a fish species whose life history traits appear conducive to evolution of chemical communication systems that confer information about social/territorial status. Male reproduction in this species is dependent upon their ability to acquire and defend a high quality nesting territory, and to attract a female to the nest. We hypothesized that fathead minnow males use visual and urine-derived chemical cues to signal territorial status. To test this hypothesis, effects of territorial acquisition on male-specific secondary sex characteristics (SSCs) and urine volumes were first assessed. Second, frequencies of male urination in varying social contexts were examined. Finally, nuclear magnetic resonance-based metabolomics was used to identify urinary metabolites that were differentially excreted in the urine of territorial versus non-territorial males. The expression of SSCs, sperm, and urine volumes increased with territory acquisition, and either remained unchanged or decreased in non-territorial males. Frequency of male urination increased significantly in the presence of females (but not males), suggesting that females are the main target of the urinary signals. Territorial and non-territorial males had distinct urinary metabolomic profiles. An unforeseen finding was that one could discern future territorial status of males, based on their initial metabolomic profiles. Bile acids and volatile amines were identified as potential chemical signals of social status in the fathead minnow. The finding that trimethylamine (a fishy smelling volatile amine) may be a social cue is particularly interesting, because it is known to bind trace amine-associated receptors, indicating that these receptors may play role in chemical signalling of social status in fish

    Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout

    No full text
    Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB-172 column on a GC-MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S-(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R-(-) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi-toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat-toxic pair of enantiomers (known as Diastereomer A ) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of Diastereomer A . Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. © 2009 Wiley-Liss, Inc

    Macadamia Information Kit. Agrilink, your growing guide to better farming guide

    No full text
    ABSTRACT: Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.daf.qld.gov.au. This publication has been reprinted as a digital book without any changes to the content published in macadamia grower's handbook. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2004. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of macadamias. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication

    Effects of territorial status on stored urine volumes.

    No full text
    <p>Urine volumes (mean ± SEM) measured in territorial (T) and non-territorial (NT) males under a competitive scenario, and in territorial males (TNC) in a non-competitive scenario. Measurements were performed before (Day 1), and after (Day 7) territory establishment. Repeated measures ANOVA indicated that urine volumes were significantly affected by territorial status, time of sampling and that the two factors interacted (* p<0.05).</p

    Effects of territorial status on stored sperm volumes.

    No full text
    <p>Sperm volumes (mean ± SEM) measured in territorial (T) and non-territorial (NT) males under competitive scenario, and in territorial males (TNC) in a non-competitive scenario. Measurements were performed before (Day 1), and after (Day 7) territory establishment. Repeated measures ANOVA indicated that sperm volumes were significantly affected by territorial status, time of sampling and that the two factors interacted (* p<0.1).</p
    corecore