1,315 research outputs found

    Time-Dependent Quasiparticle Current Density Functional Theory of X-Ray Nonlinear Response Functions

    Full text link
    A real-space representation of the current response of many-electron systems with possible applications to x-ray nonlinear spectroscopy and magnetic susceptibilities is developed. Closed expressions for the linear, quadratic and third-order response functions are derived by solving the adiabatic Time Dependent Current Density Functional (TDCDFT) equations for the single-electron density matrix in Liouville space.Comment: 11 page

    Enhanced Perturbative Continuous Unitary Transformations

    Full text link
    Unitary transformations are an essential tool for the theoretical understanding of many systems by mapping them to simpler effective models. A systematically controlled variant to perform such a mapping is a perturbative continuous unitary transformation (pCUT) among others. So far, this approach required an equidistant unperturbed spectrum. Here, we pursue two goals: First, we extend its applicability to non-equidistant spectra with the particular focus on an efficient derivation of the differential flow equations, which define the enhanced perturbative continuous unitary transformation (epCUT). Second, we show that the numerical integration of the flow equations yields a robust scheme to extract data from the epCUT. The method is illustrated by the perturbation of the harmonic oscillator with a quartic term and of the two-leg spin ladders in the strong-rung-coupling limit for uniform and alternating rung couplings. The latter case provides an example of perturbation around a non-equidistant spectrum.Comment: 27 pages, 18 figures; separated methodological background from introduction, added perturbed harmonic oscillator for additional illustration, added explicit solution of deepCUT equation

    New Measurements and Quantitative Analysis of Electron Backscattering in the Energy Range of Neutron Beta-Decay

    Get PDF
    We report on the first detailed measurements of electron backscattering from plastic scintillator targets, extending our previous work on beryllium and silicon targets. The scintillator experiment posed several additional experimental challenges associated with charging of the scintillator target, and those challenges are addressed in detail. In addition, we quantitatively compare the energy and angular distributions of this data, and our previous data, with electron transport simulations based on the Geant4 and Penelope Monte Carlo simulation codes. The Penelope simulation is found globally to give a superior description of the data. Such information is crucial for a broad array of weak-interaction physics experiments, where electron backscattering can give rise to the dominant detector-related systematic uncertainty.Comment: 7 pages, 3 figure

    Strangeness Suppression in Proton-Proton Collisions

    Full text link
    We analyse strangeness production in proton-proton (pp) collisions at SPS and RHIC energies, using the recently advanced NeXus approach. After having verified that the model reproduces well the existing data, we interpret the results: strangeness is suppressed in proton-proton collisions at SPS energy as compared to electron-positron (e+e-) annihilation due to the limited masses of the strings produced in the reaction, whereas high energy pp and e+e- collisions agree quantitatively . Thus strangeness suppression at SPS energies is a consequence of the limited phase-space available in string fragmentation.Comment: 7 Figures, 4 Page

    Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    Get PDF
    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings

    Consistent Treatment of Soft and Hard Processes in Hadronic Interactions

    Full text link
    The QCD improved parton model is a very successful concept to treat processes in hadronic interactions, whenever large partonic transverse momenta are involved. However, cross sections diverge in the limit p_T -> 0, and the usual treatment is the definition of a lower cutoff p_T_min, such that processes with a smaller p_T -- so-called soft processes -- are simply ignored, which is certainly not correct for example at RHIC energies. A more consistent procedure amounts to introduce a technical parameter Q_0^2, referred to as soft virtuality scale, which is nothing but an artificial borderline between soft and hard physics. We will discuss such a formalism, which coincides with the improved parton model for high p_T processes and with the phenomenological treatment of soft scattering, when only small virtualities are involved. The most important aspect of our approach is that it allows to obtain a smooth transition between soft and hard scattering, and therefore no artificial dependence on a cutoff parameter should appear.Comment: 19 pages, 19 figure

    Muon production in extensive air showers and its relation to hadronic interactions

    Full text link
    In this work, the relation between muon production in extensive air showers and features of hadronic multiparticle production at low energies is studied. Using CORSIKA, we determine typical energies and phase space regions of secondary particles which are important for muon production in extensive air showers and confront the results with existing fixed target measurements. Furthermore possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.Comment: To appear in the proceedings of international conference on interconnection between high energy physics and astroparticle physics "From Colliders to Cosmic Rays" (C2CR 2005), Prague, Czech Republic, 7-13 September 200

    The KATRIN Pre-Spectrometer at reduced Filter Energy

    Get PDF
    The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An ultra-low background of about b = 10 mHz is among the requirements to reach this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E filter type are used in a tandem configuration. This setup, however, produces a Penning trap which could lead to increased background. We have performed test measurements showing that the filter energy of the pre-spectrometer can be reduced by several keV in order to diminish this trap. These measurements were analyzed with the help of a complex computer simulation, modeling multiple electron reflections both from the detector and the photoelectric electron source used in our test setup.Comment: 22 pages, 12 figure
    corecore