458 research outputs found
Diagrammatic Approach for the High-Temperature Regime of Quantum Hall Transitions
We use a general diagrammatic formalism based on a local conductivity
approach to compute electronic transport in continuous media with long-range
disorder, in the absence of quantum interference effects. The method allows us
then to investigate the interplay of dissipative processes and random drifting
of electronic trajectories in the high-temperature regime of quantum Hall
transitions. We obtain that the longitudinal conductance \sigma_{xx} scales
with an exponent {\kappa}=0.767\pm0.002 in agreement with the value
{\kappa}=10/13 conjectured from analogies to classical percolation. We also
derive a microscopic expression for the temperature-dependent peak value of
\sigma_{xx}, useful to extract {\kappa} from experiments.Comment: 4+epsilon pages, 5 figures, attached with Supplementary Material. A
discussion and a plot of the temperature-dependent longitudinal conductance
was added in the final versio
On calculation of effective galvanomagnetic characteristics of inhomogeneous metals. Exact solution for the longitudinal effective conductivity of polycrystals of metals in high magnetic fields
In the framework of the perturbation theory an expression suitable for
calculation of the effective conductivity of 3-D inhomogeneous metals in
uniform magnetic field is derived. For polycrystals of metals with closed
Fermi surfaces in high magnetic fields the perturbation series defining the
longitudinal and the hall elements of the perturbation series can be summed
allowing us to obtain the exact expression for the leading terms of all these
elements of the effective conductivity tensor.Comment: 12 page
Planar isotropic two-phase systemsin perpendicular magnetic field: effective conductivity
Three explicit approximate expressions for the effective conductivity sigma_e
of various planar isotropic two-phase systems in a magnetic field are obtained
using the dual linear fractional transformation, connecting sigma_e of these
systems with and without magnetic field. The obtained results are applicable
for two-phase systems (regular and nonregular as well as random), satisfying
the symmetry and self-duality conditions, and allow to describe sigma_e of
various two-dimensional and layered inhomogeneous media at arbitrary phase
concentrations and magnetic fields. All these results admit a direct
experimental checking.Comment: 10 pages, Latex2e, 3 figure
Internal and surface phenomena in metal combustion
Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here
Duality and exact results for conductivity of 2D isotropic heterophase systems in magnetic field
Using a fact that the effective conductivity sigma_{e} of 2D random
heterophase systems in the orthogonal magnetic field is transformed under some
subgroup of the linear fractional group, connected with a group of linear
transformations of two conserved currents, the exact values for sigma_{e} of
isotropic heterophase systems are found. As known, for binary (N=2) systems a
determination of exact values of both conductivities (diagonal sigma_{ed} and
transverse Hall sigma_{et}) is possible only at equal phase concentrations and
arbitrary values of partial conductivities. For heterophase (N > 2) systems
this method gives exact values of effective conductivities, when their partial
conductivities belong to some hypersurfaces in the space of these partial
conductivities and the phase concentrations are pairwise equal. In all these
cases sigma_e does not depend on phase concentrations. The complete,
3-parametric, explicit transformation, connecting sigma_e in binary systems
with a magnetic field and without it, is constructedComment: 15 pages, 3 figures, Latex2
Extraordinary magnetoresistance in graphite: experimental evidence for the time-reversal symmetry breaking
The ordinary magnetoresistance (MR) of doped semiconductors is positive and
quadratic in a low magnetic field, B, as it should be in the framework of the
Boltzmann kinetic theory or in the conventional hopping regime. We observe an
unusual highly-anisotropic in-plane MR in graphite, which is neither quadratic
nor always positive. In a certain current direction MR is negative and linear
in B in fields below a few tens of mT with a crossover to a positive MR at
higher fields, while in a perpendicular current direction we observe a giant
super-linear and positive MR. These extraordinary MRs are respectively
explained by a hopping magneto-conductance via non-zero angular momentum
orbitals, and by the magneto-conductance of inhomogeneous media. The linear
orbital NMR is a unique signature of the broken time-reversal symmetry (TRS) in
graphite. While some local paramagnetic centers could be responsible for the
broken TRS, the observed large diamagnetism suggests a more intriguing
mechanism of this breaking, involving superconducting clusters with
unconventional (chiral) order parameters and spontaneously generated
normal-state current loops in graphite.Comment: 4 pages, 5 figure
Non-saturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation
The silver chalcogenides provide a striking example of the benefits of
imperfection. Nanothreads of excess silver cause distortions in the current
flow that yield a linear and non-saturating transverse magnetoresistance (MR).
Associated with the large and positive MR is a negative longitudinal MR. The
longitudinal MR only occurs in the three-dimensional limit and thereby permits
the determination of a characteristic length scale set by the spatial
inhomogeneity. We find that this fundamental inhomogeneity length can be as
large as ten microns. Systematic measurements of the diagonal and off-diagonal
components of the resistivity tensor in various sample geometries show clear
evidence of the distorted current paths posited in theoretical simulations. We
use a random resistor network model to fit the linear MR, and expand it from
two to three dimensions to depict current distortions in the third (thickness)
dimension. When compared directly to experiments on AgSe and
AgTe, in magnetic fields up to 55 T, the model identifies
conductivity fluctuations due to macroscopic inhomogeneities as the underlying
physical mechanism. It also accounts reasonably quantitatively for the various
components of the resistivity tensor observed in the experiments.Comment: 10 pages, 7 figure
Effective conductivity of 2D isotropic two-phase systems in magnetic field
Using the linear fractional transformation, connecting effective
conductivities sigma_{e} of isotropic two-phase systems with and without
magnetic field, explicit approximate expressions for sigma_{e} in a magnetic
field are obtained. They allow to describe sigma_{e} of various inhomogeneous
media at arbitrary phase concentrations x and magnetic fields. the x-dependence
plots of sigma_e at some values of inhomogeneity and magnetic field are
constructed. Their behaviour is qualitatively compatible with the existing
experimental data. The obtained results are applicable for different two-phase
systems (regular and nonregular as well as random), satisfying the symmetry and
self-duality conditions, and admit a direct experimental checking.Comment: 9 pages, 2 figures, Latex2e, small corrections and new figure
- …