109 research outputs found

    Quantumness of correlations and Maxwell's demons in elementary scattering processes—Energetic consequences

    Get PDF
    The interactions between physical systems generally lead to the formation of correlations. In this paper we consider the phenomena of entanglement and "quantumness of correlations", such as quantum discord, with particular emphasis on their energetic consequences for the participating systems. We describe a number of theoretical models that are commonly employed in this context, highlighting the general character of one of their most intriguing results: In contradiction to conventional expectations, erasure (decay, consumption) of quantum correlations may be a source of work, i.e. may have "negative energetic costs". We report experimental evidence of this surprising effect obtained within the framework of an elementary scattering experiment, namely ultrafast neutron Compton scattering from normal-state liquid 4He. The general theory of quantumness of correlations provides a natural way of interpreting the reported results, which stand in blatant contrast to the conventional theory of scattering, where neutron-atom-environment quantum correlations and decoherence play no role. Moreover, they provide a new operational meaning of discord and related measures of quantumness

    Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect and Anomalous Cross Section induced by Quantum Interference

    Full text link
    Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard shere'' like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in quite general potential system and will be useful in understanding some other phenomena in mesoscopic phyiscs.Comment: 6 figure

    A Statistical Description of Molecular Dynamical Processes in Liquids. Application to FIR Absorption Spectroscopy

    Get PDF
    The basic physical concepts concerning the derivation and validity of the generalized fluctuation-dissipation theorem (FDT) as revealed in an earlier paper11 are discussed. It is shown that dissipation of irradiation within the framework of Kubo\u27s linear response theory is mainly due (i) to the short-time behavior of the coupling operator of a system with the irradiation field, (ii) to the spontaneous fluctuations concerning the statistical operator in the microscopic time scale, and (iii) to the explicit introduction of the coupling of the systems with the thermal bath in Kubo\u27s formalism, as proposed by van Vliet. As a result, the statistical operator becomes time dependent in the shorttime range. Within Kubo\u27s microscopic theory of irreversible processes the generalized FDT also delivers a microscopic interpretation of Prigogine\u27s theorem of minimum entropy production (TMEP)

    Spontaneous spin bifurcations and ferromagnetic phase transitions in a spinor exciton-polariton condensate

    Get PDF
    We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and randomly adopts one of two elliptically polarized (up to 95% circularly-polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100-fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.This work was supported by Grants EPSRC No. EP/G060649/1, EU No. CLERMONT4 235114, EU No. INDEX 289968, Spanish MEC (MAT2008-01555), Greek GSRT ARISTEIA Apollo program and Fundación La Caixa, and Mexican CONACYT No. 251808. FP acknowledges financial support through an EPSRC doctoral prize fellowship at the University of Cambridge and a Schrödinger fellowship at the University of Oxford.This is the final version of the article. It first appeared from the American Physical Society via http://dx.doi.org/10.1103/PhysRevX.5.03100

    Single-molecule optomechanics in "picocavities"

    Get PDF
    Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer ("picocavities"), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106^{6} enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.Supported by Project FIS2013-41184-P from MINECO (Ministerio de Economía y Competitividad) and IT756-13 from the Basque government consolidated groups (M.K.S., Y.Z., A. Demetriadou, R.E., and J.A.); the Winton Programme for the Physics of Sustainability (F.B.); the Dr. Manmohan Singh scholarship from St. John’s College (R.C.); the UK National Physical Laboratory (C.C.); the Fellows Gipuzkoa Program of the Gipuzkoako Foru Aldundia via FEDER funds of the European Union “Una manera de hacer Europa” (R.E.); UK Engineering and Physical Sciences Research Council grants EP/G060649/1 and EP/L027151/1; and European Research Council grant LINASS 320503

    Correlation property of length sequences based on global structure of complete genome

    Get PDF
    This paper considers three kinds of length sequences of the complete genome. Detrended fluctuation analysis, spectral analysis, and the mean distance spanned within time LL are used to discuss the correlation property of these sequences. The values of the exponents from these methods of these three kinds of length sequences of bacteria indicate that the long-range correlations exist in most of these sequences. The correlation have a rich variety of behaviours including the presence of anti-correlations. Further more, using the exponent γ\gamma, it is found that these correlations are all linear (γ=1.0±0.03\gamma=1.0\pm 0.03). It is also found that these sequences exhibit 1/f1/f noise in some interval of frequency (f>1f>1). The length of this interval of frequency depends on the length of the sequence. The shape of the periodogram in f>1f>1 exhibits some periodicity. The period seems to depend on the length and the complexity of the length sequence.Comment: RevTex, 9 pages with 5 figures and 3 tables. Phys. Rev. E Jan. 1,2001 (to appear

    Measure representation and multifractal analysis of complete genomes

    Get PDF
    This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and multifractal analysis are then performed on the measure representations of a large number of complete genomes. The main aim of this paper is to discuss the multifractal property of the measure representation and the classification of bacteria. From the measure representations and the values of the DqD_{q} spectra and related CqC_{q} curves, it is concluded that these complete genomes are not random sequences. In fact, spectral analyses performed indicate that these measure representations considered as time series, exhibit strong long-range correlation. For substrings with length K=8, the DqD_{q} spectra of all organisms studied are multifractal-like and sufficiently smooth for the CqC_{q} curves to be meaningful. The CqC_{q} curves of all bacteria resemble a classical phase transition at a critical point. But the 'analogous' phase transitions of chromosomes of non-bacteria organisms are different. Apart from Chromosome 1 of {\it C. elegans}, they exhibit the shape of double-peaked specific heat function.Comment: 12 pages with 9 figures and 1 tabl

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    Spontaneous spin bifurcations and ferromagnetic phase transitions in a spinor exciton-polariton condensate

    Get PDF
    We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and randomly adopts one of two elliptically polarized (up to 95% circularly polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures, it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100- fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.Publisher PDFPeer reviewe
    • …
    corecore