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The basic physical concepts concerning the derivation and 
validity of the generalized fluctuation-dissipation theorem (FDT) 
as revealed in an earlier paper11 are discussed. It is shown that 
dissipation of irradiation within the framework of Kubo's linear 
response theory is mainly due (i) to the short-time behavior of the 
coupling operator of a system with the irradiation field, (ii) to the 
spontaneous fluctuations concerning the statistical operator in the 
microscopic time scale, and (iii) to the explicit introduction of the 
coupling of the systems with the thermal bath in Kubo's formalism, 
as proposed by van Vliet. 

As a result, the statistical operator becomes time dependent 
in the shorttime range. Within Kubo's microscopic theory of ir
reversible processes the generalized FDT also delivers a microscopic 
interpretation of Prigogine's theorem of minimum entropy pro
duction (TMEP). 

1. INTRODUCTION 

In recent contributions to the statistical mechanics of nonequilibrium 
states much progress has been achieved especially by investigating the fluctuat
ion-dissipation theorem (FDT) in its different versions1- 10• For some spectro
scopic methods which probe the dynamics ·of molecular motions in liquids 
(and in general in disordered condensed media) Kubo's theory1•2 is especially 
suitable as has also been shown in our first paper in this series11 . 

In this paper the dynamics of a molecular (and, therefore, not macroscopic) 
quantity M will be considered. As an example M will be indentified with the 
permanent electric dipole moment of a rather small polar molecule like CH3 CN 
in the liquid phase. The quantity Mis assumed to be coupled with an external 
electromagnetic field through the semiclassical ·interachon Hamiitonian, Eq. (1) , 
as Kubo proposed in hi s linear response theory (LRT)1•2. 

1.1. Utilization of FIR Absorption Spectra 
For reasons of clarity and illustration we confine the following considerat

ions to the physical context of far-infrared (FIR) absorption spectroscopy of 
dilute solutions of polar molecules in non-polar solvents. It is well-known, 
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that FIR-absorption spectra occur mainly due to rotational relaxation of the 
polar molecules11-rn. 

In such cases the relation 

holds true, where Wmax denotes the frequency of the irradiation field at the 
maximum of the measured absorption band, and iM is the rotational relaxation 
time of M. Thus, there are no »well-defined« of »stable« rotational quantum 
states for the molecules under consideration during time intervals of the order 
of tmax· The interaction between FIR-irradiation and spectroscopic probe, there
fore, cannot lead to well-defined quantum-mechanical excited states. As a 
matter of fact the »absorbed« irradiation energy will be dissipated, at least 
if the time intervals of the order of tmax are considered. From this follows 
that the necessary conditions for the validity of the so-called adiabatic-appro
ximation (see ref. 20, §§ 11 and 125) are not fulfilled. This approximation for 
the calculation of the rate of irradiation energy di:ssipation, however, is success
fully used within many physical problems. For the case of FIR spectroscopy, 
however, the inadequacy of the adiabatic approximation must be examined 
carefully (see Sec. 2.2). 

1.2. Van Vliet's and van Kampen's Criticism Concerning LRT 
As van Vliet states: »Linear response theory speaks of dissipation and 

associated transport coefficients, but nowhere is the dynamics commensurate 
with dissipation introduced. «; and additionally: »In the formalism (of LRT) 
as it stands no dissipation is manifest.« (cf. 21, p. 1353 and abstract, respectively). 
This statement can be verified in the case of irradiation interacting with the 
quantum systems dealt with (see Sec. 3.1). It can be shown that there is 
irradiation energy dissipation in LRT if the coupling operator M shows non
-Markovian behavior25 • This is again the case if one considers a microscopic M 
within time intervals of the order iM since now memory effects concerning 
the dynamical behavior of M are of importance26- 28, 3, 10- 11• As van Vliet asserts, 
the coupling of the quantum system with the heat bath must be explicitly 
taken into the formalism21 • This seems to be important in the molecular (i.e. 
microscopic) time scale, since then it is easy to show that the density operator 
of the ensemble cannot be a static quantity (see Sec. 3.3). Furthermore we can 
show that in this case there is dissipation in LRT. 

In this context van Kampen's critisism concerning Kubo's linearization 
of the density operator23- 24 must also be pointed out. This linearization cannot 
be generally justified. However in the case of FIR~spectroscopy this procedure 
is acceptable due to the fact that the time interval during which the lineari
zation must work is small, i. e. of the order of the relaxation time 'iM, which 
is typically of the order 10-12 s or even smaller under normal conditions (cf. 21, 
p. 1353). Nevertheless, Kubo's linearization of the density operator shows an 
important weakness: it introduces a »repeated randomization« into the calcu
lations; as van Kampen states: »The effect of randomization is simulated by 
the linear approximation.« (cf. ref. 23 p. 282). 

This remark will be of some importance in our considerations concerning 
fluctuations of the density operator in the microscopic time scale (see Sec. 3.3). 
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2. ON THE FLUCTUATION-DISSIPATION THEOREM (FDT) IN KUBO'S FORMALISM AS 
APPLIED TO MOLECULAR QUANTITIES 

Now we discuss some fundamental assumptions concerning the derivation 
of the generalized FDT11• 

2.1. On the Hamiltonian 

We have considered a dissipative system (with the unperturbed Hamilto
nian H0 ) interacting with an external driving system (radiation with the 
Hamiltonian Hex) · In the so-called dipole approximation the interaction Hamil
tonian of the whole system is10 

H 1 =-M · E (1) 

M and E are two characteristic quantities of the partial systems with the 
Hamiltonians H 0 and Hex, respectively. 

Usually the dissipative system possesses a large number of degrees of free
dom and a quasi-continuous energy spectrum. On the other hand the driving 
system or external disturbance has relatively few degrees of freedom and 
a very high degree of excitation. The coordinates and momenta of the external 
disturbance as well as of the quantity E can be considered, therefore, as being 
essentially some classical functions of time10, and the perturbed Hamiltonian 
attains the form 

H = H 0 - M · E (t) (2) 

As stated in Sec. 1.1, we consider the special case where the operator M 
represents a microscopic quantity, e.g. the permanent electric dipole moment 
of a molecule like CH3CN. The dissipative system consists of one polar mole
cule (or: of one polar molecule and a small number of non-polar solvent 
molecules surrounding it). As is well known, in Kubo's original presentation 
of LRT1- 2 the coupling of the quantum system with the thermal bath is not 
taken into account by the Hamiltonian but is only indirectly introduced into 
the formalism through the linearization 

of the exact density operator (], as mentioned in Sec. 1.2., where (]eq represents 
the equilibrium canonical density operator 

lleq = exp (-/3 · HYTr exp (-/3 · H0 ) 

However, as van Vliet states, »If this is to be more than a mathematical 
artifice, we must physically change the system so it becomes open and in 
interaction with the heat bath« (cf. ref. 21 p. 1353). We do not introduce this 
coupling explicitly into the Hamiltonian, since we are not interested in impro
ving the LRT but only in its application. This improvement of LRT, in con
nection with the so-called van Hove limit, has been carried out successfully 
by van Vliet21- 22 • 

Nevertheless, the importance of this coupling in the physical context of 
molecular FIR spectroscopy is beyond dispute; the reason being that the inter
action of a polar molecule (and its cage of surrounding solvent molecules) 
with the environmental dielectricum cannot be considered as being »very 
small«. As we will show in Sec. 3.3.1. this coupling naturally leads to a time 
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dependent or »fluctuating« density operator in the microscopic time scale; 
hence van Kampen's critisism on the linearization of (} seems to be also con
firmed in the special case under consideration. 

2.2. Rate of Dissipation and Adiabatic Approximation 
The irradiation energy dissipation per time unit has to be evaluated by 

means of the operator of the time dependent perturbaUon, which in the 
simplest case reads 

Hr=-M · E (3) 

(For simplicity's sake we discuss the problem in classical-mechanical terms.) 
The applied electric field perturbing the equilibrium within disordered 

condense molecular matter is assumed to be of sinuidal character in the FIR 
spectral region 

->-
E = E0 • exp (iwt) 

where w = 1011 ••• J013 s-1. 
In organic liquids of small and uncharged molecules the first relaxation 

time TR, e. g. of molecular reorientation, is of the order of one picosecond. 
Hence 

and during a time interval f::..t = TR the perturbation energy will be changed by 

l'lHr = - f'lM · E - M · l'lE (4) 

Thus 

. ·-~ 

Hr= -M · E-M · E (5) 

The ensemble average (Hr) of H1 delivers the rate of irradiation energy 
dissipati<on Q (w) by the molecular quantum system under consideration. 

Two notes of caution may be helpful in avoidi:ng confusion. In the first 

--> --> 
step one might think that the term M · E completely determines the rate 
of energy dissipation Q. This assumption could be based on the well known 
theorem of mechanics which states that for the total Hamiltonian H of the 
material system holds dH/dt = oH/ot. In our case only the interaction term 
H1 exibits an explicit time dependence and thus 

dH aH -> --> 
Q = ( - ) = ( - 1 

) = - (M · E) 
ctt at 

(6) 

Nevertheless it would be wrong to assume that this »derivation« is always 
correct. Eq. (6) holds true only if adiabatic processes are considered, as e. g. 
Landau and Lifschitz have shown very clearly (cf. ref. 20 §§ 125 and 11). 

--> 
An important necessary condition for the validity of Eq. (6) is that E (t) varies 
very slowly in time compared with the characteristic relaxation time of the 
(quantum) system. This condition is fulfilled in many cases, e.g. NMR, ESR 
and dielectric relaxation in liquids. 
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However, in the case of FIR speCtroscopy this condition is violated: As 

mentioned in Sec. 1.1, the period TE of E (t) is now of the same order of 
--> 

magnitude as the reorientational relaxation time 't°M of M. Naturally, even in 
cases where the »adiabatic condition« is not fulfilled, Eq. (6) is approximately 

--> 
valid, e. g. if that E (t) oscillates very fast compared with 't°M· In other words: 

if TE « 't°M then the molecular quantity M can be approximately considered 
to be a »constant« during time intervals of the order of TE since then 

-+ --"' _... ~ 

0 "" ( M · E (t) ) « ( M · E ) and from Eq. (5) follows Eq. (6) approximately. 
This physical situation can be found e. g. in the case of UV spectroscopy in 
fluids and in FIR spectroscopy in the gas phase. Please note that in those 
cases the absorbed irradiation energy will not be dissipated during time 
intervals of the order of TE, but rather leads to well-defined excited quantum 
states. This process can be reasonably described by quantum mechanics (but 
not by thermodynamics). 

Another remark may also be helpful. Sometimes it is believed that the 

term (Hr), 

• -+~ ~""' 

(Hr) =- ( M · E) - (M · E) 

is identically zero, because (i) the first term on the rhs. is the change in the 
system energy, ~ri) the second term is the change in the field energy, (iii) the 
total system (system plus field) is isolated and, therefore, the total energy 
cannot decrease. Of course, thi<s argument is correct if processes which con
serve energy in the mecharuical ·sense are considered. 

However, in connexion with dissipative processes •the above »derivation« 
is absurd: As a matter of fact, that part of field energy being converted 
into heat cannot be represented by the system Hamiltonian (and its ensemble 
average) , since that amount of the field energy causes an increase of the 
internal energy of the thermal bath. 

2.3. The Exact FDT tn Linear Response Theory 

In •the quantum mechanical case it follows from Eq. (5) 

. . . 
Q = (Hr) = - (M) E - ( M ) E (5a)' 

This equation can be derived more formally too. With the aid of the Heisen
berg equation of motion for Hr we get 

• 1 a 
Hr = - - [M · E, HJ -;;-t (M · E) 

ih u 

1 • 
=-- [M HJ· E-M · E 

ih ' 
. . 

:=-M·E-M·E 

and consequently (5a) holds. 
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The two terms of Eq. (5a) have been calculated for the »microscopic« case 
mentioned in Sec. 1.1. 

Because of the fact that the superposition principle is valid within the 
linear response theory, we can calculate Q (w) for a monochromatic external 
perturbation E (w) with frequency w, which yields11 

1 /\ /\ 
Q (w) °' h I E0 12 • tanh ({Jhw/2) · {w · C (w)-w-1 · C' (w)} 

with the abbreviations 
/\ 

(7) 

C (w ): Fourier transform of the quantum-mechanical time autocorrelation 
function of the operator M, 

/\ 
C' (w): Fourier transform of the quantum-mechanical time autocorrelation 

function of the operator M, 

fJ = 1/kT, where T is the temperature of the heat bath of the ensemble 

E 0 : amplitude of the external electric wave. 

Eq. (7) is rigorous, therefore, iin the sense of linear response theory. It 
represents a generalization of the well known version of the FDT16- 11 

Q (w) °' : I E0 12 tanh ({Jhw/2) · w · ~ (w) 
old n 

(8) 

The weakness of Eq. (8) will be shown in connection with some remarks 
concerning the theorem of minimum entropy production in the microscopic 
time scale (see Sec. 5 and Appendix A). 

As an illustrative example of the importance of the generalized FDT the 
following experimental result can be mentioned: 

(!) 

u 
c 
0 

_o 
'-
0 
Ul 

_o 

<t: 

0 

I 
I 

/ 
I 

I 

-'\ 
\ 

\ 
\ 

\ 
\. 

'\. 

' ' 
50 100 

........ , 

Frequency v /cm-
1 

-

Schematic representation of the temperature dependence of FIR absorption bands of aceto
nitrile in n-heptane; comparison with the gas-phase rotational spectrum of acetonitrile (lower 

left side). 
Solid lines: T = 345 K; dashed lines T = 248 K . Cf. refs. 11, 14 and 25. 
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The FIR absorption spectra of acetonitrile in some solutions show an »ano
malous« temperature dependence14, see Figure. By increasing temperature the· 
absorption bands of the solutions become narrowed. This seems to indicate 
an »anti-Boltzmann« behavior, as we see by comparison with the shape change 
of the corresponding gas spectrum. 

This effect is anomalous only with respect to the usual FDT, Eq. (8); 
A 

it plainly confirms the importance of the term with C', appearing in Eq. (7) , 
cf. ref. 11. 

3. THE AMOUNT OF ENERGY DISSIPATION 

In the first paper11 of this series we have already pointed out the inequality 

A A 
w · C (w) :2: w-1 • C' (w) (9) 

This relation follows directly from 
(i) the form of the interaction Hamiltonian and the exact form of its 

time derivative, 
(ii) the generalized FDT, i. e. (7), and 
(iii) the Second Law of thermodynamics. 
An important mathematical condition is the analyticity of the used after

-effect functions in the lower complex halfplane including the real axis. 
This relation, therefore, must be a fundamental inequality valid in several 

cases in molecular quantum-mechanical statistics, even though, of course, in 
some other cases the approximation 

A A 
w · C (w) = w-1 • C' (w) (9a) 

is valid, which also means that Q (w) = 0. 

3.1. On the Memory Effects in the Short-time Behavior of the Dynamical 
Quantity M 

Eq. (9a) is usually obtained (in the case of an »one-sided« time correlation 
function) from 

. . a . 
(M (t0 ) • M (t0 + t)) = - ( M (t

0
) • M (t0 + t)) at 

a . 
= - (M (t - t) · M (t )) at o o 

()2 
= - - I M (t - t) · M (t )) a2t \ 0 0 

a2 
= - - (M (t

0
) • M (t

0 
+ t)) 

a2t 

and the Fourier transformati-on of this Tesult, see e. g. ref. 29. 

(10) 

This derivation, however, makes use of some very restrictive conditions, 
since generally the dynamical equation 

ct 1 a 
M= - M= - [M H] + - M 

ctt ih ' at 
is valid30• 
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Derivation (10) makes sense if [M, H] = 0. 
Nevertheless, (10) is correct in the special case of a macroscopic quantity, 

~. g. magnetization of a NMR-probe. 
For this case van Kampen has already shown that the above commutator 

can be neglected to a very good approX!imation13- 33• This result has been 
confirmed by van Vliet, too (cf. 21 Sec. 9.3). A ·second proof of (9a) can be 
given for the Markovian case28 

1 
M=-[M H] 

ih ' 
(11) 

The straightforward proof makes use of the cyclic permutivity of the trace 
and the assumption that H commutes with Q· · 

d2 1 
- (M (0) . M (t)) = (- )2 TreM (OJ [[M, HJ, H] 
dt2 ih 

= ... = - (M (0) • M (t)) (12) 

As in the derivation of Eq. (10) here again it has been presupposed that 
stationarity holds and, additionally, that g is a static quantity; these conditions 
will be treated in the following sections. Of course, Eq. (11) physically means 
that the system under consideration (with Hamiltonian H) must be isolated. 
But this case is of less interest (see Sec. 1.2). Nevertheless, both derivations 
are valid to a certain extent. As a result, van Vliet's statement on vanishing 
dissipation in Kubo's LRT is confirmed in these cases (cf. Sec. 1.2 and ref. 25.). 

From the derivations (10) and (12) we see that the following statement 
bolds: 

Statement I: The equation (9a) is valid only if the (formal) operator 
Tr Ce· · ·) commutes with d/dt and Jdt) and the condition of stationarity holds. 

But the named operators generally do not commute. This can be shown 
with the aid of Mari's generalized Langevin equation [34] concerning the 
quantum-mechanical operator M (t) 

d t 
- M (t) = - S q; (t - s) · M (s) ds + f (t) 
dt 0 

(13) 

Now let us assume the general validity of the commutation mentioned above, 
.and as a consequence we will derive a contradiction. (The following derivation 
is shortened; a rigorous treatment can be found in Ref. 25). 

A formal multiplication of Eq. (13) with Tr e M (t0 ) and interchanging 
the order of the named operators yield 

d t 
- (M (t

0
) • M (t)) = - J q; (t - s) · (M (t0 ) • M (s)) ds + (M (t0 ) f (t)) (14) 

dt 0 

The second term on the right is usually equal to zero due to the fact that in 
many cases f (t) fluctuates very fastly (compared with the »fluctuation time« 
of M (t)). Therefore, in the limit t 0 -->- t it follows 

d ? t 
-(M (t) 2) == - S q; (t- s) (M (t) · M (s)) ds 
dt 0 

(15) 
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As is known, the left-hand srde is always zero. On the other hand, the 
right-hand side generally does not vanish and this is a contradiction concer
!1.ing (9a) and (10) as well. (This method of p1oof has a formal similarity to 
the one used by Zwanzig in ref. 28 p. 2530.). 'l hus, even the second statement 
holds25 : 

Statement Ila: The operator Tr (e · · ·) generally does not commute with 
d/dt or jdt. 

This result can also be formulated in ,nore physical terms: 

Statement Ilb: The equation (9a) is generally wrong if the dynamical 
quantity M shows a non-Markovian beh< vior and if t < <M· 

But it can be shown, of course, tha' Eq. (9a) is valid within the limit 
t » TM25,35. 

3.2. On the Neglect of Time-odd Variables by the Long-time Treatment 
of a »Markovian« System 
An observable can quite generally l 1e classified as time-even or time-odd 

depending on whether they do or do mt change sign under the time· reversal 
transformation. In a nomenclature introduced by Casimir36 and also used by 
de Groot and Mazur35 the time-even and time-odd variables are called a
-variables and /]-variables, respectively. (Here the symbol /J is not to be 
i:onfused with quantity 1/kT.) 

Now it is important to note that Eq. (9a) also lacks general validity 
within the »standard« theory of irreversible processes35• Here the dynamical 
behavior of M (t) is assumed to be Markovian. Equation (9a) is only valid 
if some restrictive conditions are met (see ref. 35. Sec. VII§4 and VIII§2): . 

(i) Each dynamical /]-variable (i. e. in our case M) must be uniquely 
definable through an appropriate a-variable (i. e. M). 

(ii) The .fl-variables must no1. be needed for the dynamical description 
of the system. 

(iii) The decay time of a flue ruation of a .fl-variable must be much smaller 
than the decay time of a fluct lation of the corresponding a-variable. 

Consequently, Eq. (9a) hol<' s only in the »long-time« limit. These con
ditions, of course, depend on f ·.iCh other. (iii) is a common condition if one 
deals with macroscopic varia1'lt..ss,2s,as. 

(i) and (ii) are physically 1ery restrictive, because they imply that only 
a subset of the whole phase space is sufficient for the statistical-mechanical 
treatment of the system. From this also follows that the a-variable is a 
coarse grained variable. It must be pointed out that variables of this kind 
are of no interest for the description of the microscopic dynamical behavior 
of matter dealt with. As a result the following statement holds: 

Statement Ile: The equation (9a) is wrong in the »short-time« limit even 
if the system shows a Markovian behavior25 • 

In addition, the following remark should be pointed out: The derivation 
of the generalized FDT, Eq. (7),' does not make use of the commutation for
bidden by the statement Ila. 

The main result of ref. 11. and of this paper can be reformulated, with 
the nomenclature used in this section, by the following: The FDT must be 
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amended when the autocorrelation function of a /)-variable such as M is not 
equal to minus the second order time derivative of that of the corresponding 

a-variable, such as M. 

3.3. Fluctuations Concerning the Ensemble Statistical Operator Q of a 
Spectroscopic System 
The existence of many degrees of freedom in a physical system automa

tically implies spontaneous fluctuations; we can say that they have an »inter
nal« origin. On the other hand, a system can also show fluctuations with an 
»external« origin, e.g. foom a temporary disturbance of the boundary con
ditions2o,35-4o. These facts also can provide an illustration for the formal 
statement Ila. 

3.3.1. Fluctuations Due to Coupling of the System with the Environment 

Van Vliet has recently shown how to generalize the linear response for
malism for the treatment of systems which are coupled with a thermal reser
voir21-22, see also ref. 25. TMs coupling can be represented expMcitly by van 
Vliet's partitioning of the system Hamiltonian 

A= const. (16) 

H 0 on the right is a functional of the coordinates and momenta of the particles 
constituting the system, whereas }. · V depends on the coordinates and mo
menta of both the system and the heat bath. Therefore, the »exact« statistical 
operator21 

def 1 
l'micr = z ·exp (3 · (-H0 -2V) (17) 

must be »projected« onto the phase-space area conceming the physical system 
under consideration. (This can be carried out e.g. by Zwanzig's method41-42). 
Such a »projection« usually implies an explicit time dependence for (!, as 
we can see from the following: 

In an approximation we get the statistical operator e by 

(I = Tr(bath) l'micr (18) 

i. e. 'if an adiabatic approximation for the bath degrees Gf freedom would be 
valid21. By means of this procedure the operator e in general becomes explicitly 
time dependent due to the fact that the operator Tr<bath) depends on the time 
during which the trace formation has been carried out. Therefore, for a 
»small« coupling }, · V the statistical operator attains the form 

with 
(I (t) = l'eq + A • ~(bath) (I (t) 

1 " = - · exp (- (3H ) 
"eq Z' o 

(19) 

(20) 

Note that the von Neumann equation generally does not hold for (!, if AV 
is neglected: 

a 1 
-n ¢-[H n] at - ih o'" 

(21) 
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Additionally it is important to note that the »exact« density operator, Eq. (17) , 
cannot commute with H 0 for all times; it follows >that the use of (>eq, which 
commutes with H 0 for all times, introduces a repeated random phase assum
ption into the calculations, ref. 43 p. 1205. This has already been mentioned 
in Sec. 1.2. 

3.3.2. Spontaneous Fluctuations and the Stationarity Condition 

As mentioned above, these kind of fluctuations does not have a determi
nistic mechanical origin. For our purposes, we can formulate the ansa.tz 

e (t) = !?eq + A (•PJ e (t) (22) 

where the second term on the right-hand si:de is explicitely time dependent. 
For this statistical operator, too, relati'On (21) holds. The stationarity condition, 
therefore, as mentioned in statement I., cannot hold in the short-time limit 
of observation. (This result is valid very generally in quantum mechanics, 
see ref. 20 § 5, since the relation e = (>eq becomes incorrect in this time limit.). 

3.3.3. Consequences for Spectroscopic Systems 

We consider a spectroscopic probe consisting of a dilute solution of dipolar 
molecules in a nonpolar solvent. We can regard a few dipolar molecules with 
the surrounding molecules of the solvent as being a »system«. In this case 
the heat bath for each system consists of the remaining part of the probe. 
Thus we see that van Vliet's ansatz (21) finds a natural interpretation: 

The coupling operator l · V represents the interaction between the systems, 
e.g. by contact of their surfaces and/or by dipole-dipole interaction etc. 

The fact that the whole spectroscopic probe has many degrees of freedom 
implies the existence of spontaneous fluctuations concerning the ensemble 
density operator !?· 

These remarks also permit an illustrative interpretation of the statement 
Ila in the following way: 

We consider the time derivative of the ensemble average Tr eX, where X 
is an arbitrary operator representing an observable quantity, 

d • • 
- Tre · X = TreX + TreX 
dt 

(23) 

With the formal ansatz e (t) = f2eq + (Je (t), see (19) and (22), and the ob
vious relation 

. . 
Tr !?eq X » Tr o e (t) X (24) 

we obtain 
d • d dt Tr e X = Tr !?eq X + 'l'r ( dt o e (t)) · X (25) 

The first term on the right represents the usual approximation in Kubo's 
linear response theory as it stands1- 2• The second term is of importance, if the 
»relaxation« time of a microscopic quantity X is of the same order of magni-
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tude as a characteristic fluctuation (or decay) time of the small term oe (t). 
Then we must regard the second term on the right of Eq. (25) to be of import
ance, which is due to the fact that the relation 

· d 
Tr t-· - o !? (t)) · x » Tro !? (t) · x 

dt 

can be valid, if the term O(! (t) fluctuates very quickly. 

(26) 

As a matter of fact, the time dependent term in Eqs. (19) and (22) fluctuates 
during a characteristic time of microscopic order of magnitude. Therefore, in 
the case of a macroscopic quantity X Eq. (25) can be replaced by 

d 
- Tr!? · X = Tr!? X dt eq 

(27) 

as is usual in linear response theory. 
We summarize: 
If the coupling operator M in Eq. (2) represents a microscopic dynamical 

quantity of the system, we must take into account the fluctuations concerning 
the density operator e of the ensemble. Namely both M and e can »fluctuate« 
with characteristic times of a comparable order of magnitude and, therefore, 
we must be careful when performing the time derivation of an ensemble 
average. Thus, Eq. (25) shows that these fluctuations imply the non-commutat
ion of the operators d/dt and Tr (e · · · ). 

4. ON THE DOMAINS OF APPLICATION FOR THE GENERALIZED FDT 

As can be seen from the statements put forward in chapters 2. and 3., 
this question is to be answered by the detailed analysis of the quantities 
constituting the interaction operator H1. The form (1) of the interaction operator 

H 1 =-M · E 

proves that the generalization (7) is important for those cases where the 
»characteristical times« of the dynamic behavior of the quantities M and E 
are of comparable magnitude. 

The range of application of the named theorem may also include 
i) parts of the vibrational-rotational spectroscopy of the middle IR in the 

liquid or compressed gas phase, 
ii) the corresponding experiments with molecules being adsorbed on sur-

faces, 
iii) parts of the corresponding Raman spectroscopy, 
iv) depolarized light (Rayleigh) scattering experiments. 
The named range of application does certainly not include 
i) those cases where M is a bulk matter quantity and E an external di

sturbance of (relatively) slow frequency, 
ii) UV spectroscopic experiments in the liquid phase, since the electronic 

transitions and the corresponding external disturbance are much »faster« 
than the reorientation-vibration processes of the molecules considered. 
(Those are only to be observed by means of the decay functions of the 
degree of fluorescence polarization of e. g. aromatic compounds in dilute 
solutions44.) 
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5. IS THE THEOREM OF MINIMUM ENTROPY PRODUCTION (TMEP) VALID ON 
THE MICROSCOPIC TIME SCALE? 
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This well-known theorem45,35,3; states that if a steady state of a system 
occurs sufficiently close to an equilibrium state, it may be characterized by 
an extremal principle according to which the entropy production P has its 
minimum value at the steady state compatible with the prescribed special 
constraints. 

The TMEP has been proved within the framework of phenomenological 
theory35,37 and, to ·our knowledge, it has no analogue within Kubo's statistical
-mechanical theory of irreversible processes. Therefore, it is surprising to 
note that the general!i.zed FDT Eq. (7) seems to have close reference to the 
TMEP, at least in some interesting limited cases. This will be treated in the 
following section especially with regard to a spect:mscopic experiment. 

Firstly we define the entropy producti·on P within the framework of 
Kubo's theory of irreversible processes by 

def Q (w) 
P(w) = -

T 
(28) 

T is the temperature of the heat bath; the ensemble is canonical. This 
definition is physically meaningful due to the fact that the coupling of the 
system with the external field, Eq. (1), is very weak and, therefore, the en
semble remains in thermal equilibrium.1,2 The term P (w) still represents, of 
course, a microscopic quantity. In a spectroscopic experiment one rather 
observes the quantity 

macro N ·1 N 

P (w) = ~ Pi (w) = ~ Qi (w) IT (29) 
i=l i = l 

N is the number of microscopic systems constituting the material probe. 
The subscript i expresses the assignment of the quantities P and Q to the 
i-th system of the ensemble. (For simplicity, for the absorption cross-section 
holds a= 1). 

Usually a spectroscopic experiment with a weak irradiation source (i. e. 
no laser!) takes time of a macroscopic order of the magnitude. The fluctuation 
phenomena mentioned in Sec. 3, therefore, have the same time-average effect 
on each one of the members of the ensemble. Therefore it holds 

macro Q (w) 
P (w) = N · P (w) = N · -

T 
(30) 

As a realistic example we now consider a very low pressure gas of dipolar 
molecules, which constitute the ensemble of interest. Within a sufficiently 
short time interval 11t, the system can be regarded as an ensemble of isolated 
particles. M must be very much shorter than the mean »free flight time« of 
a molecule. 

In this case, however, the spectroscopic probe can absorbe irradiation 
energy but cannot dissipate it during M; this is due to the fact that entities 
like heat, temperature and entropy have no physical meaning within the 
framework of the »one-body-problem«. In the case under consideration, there
fore, the entropy production must be equal to zero. 
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This result can also be formally achieved with Eq. (30) and the generalized 
FDT by means of the following steps : 

i) For each isolated particle the equation of motion (11) holds. 
ii) We regard the ensemble to be stationary, and in thermal equilibrium 

with non-fluctuating density operator (?eq· 

iii) The derivation (12) now holds. 
Thus, Q (w) = 0, q. e. d. In this case the entropy production reaches its absolute 
minimum, namely it vanishes! 

These considerations can also be applied to the interaction of an ideal 
crystal at very low temperature with a weak radiat~on field: Some excited 
states (e.g. optical phonons) can be created by absorption of radiation. This 
absorption process can be very fast compared with the time needed for the 
dissipation of the energy contained in these quasi-particles. This is due to the 
fact that dissipation (i.e. the decay of these states) is caused by »scattering« 
processes between these quanta. 

In another case the quantity M will be macroscopic, e. g. the magnetization 
of an NMR probe. The »short-time« dynamical behavior, i.e. · t « l'M, is then 
given by 

d 1 a 
-M=-[M HJ + - M(t) 
dt ih ' 0 at 

As van Kampen has already shown (see Sec. 3.1), 

[M,H0 ] = O 

Thus, Eq. (31) degenerates to the form 

d a 
- M= - M 
at at 

and, therefore, derivation (10) yields the desired result 

Q (w) = 0, if t « 'tM 

(31) 

(32) 

Of course, this is physically mean~ngful, since within this time limit the system 
can be considered as conserved. 

We summarize: 
The validity of the TMEP on the considered molecular level can be shown 

in some »trivial« cases, where Q (w) vanishes. 
A general proof of this theorem within the framework of Kubo's micro

scopic-statistical theory of irreversible processes should use a concrete inter
relation between the time autocorrelation functions C and C', which does not 
seem to exist yet. 

Further relations between the generalized FDT and the TMEP will be 
published soon. 
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APPENDIX A 

A Molecular-Mechanical Model to Illustrate the FDT 

It is certainly instructive to illustrate the generalized FDT, Eq. (7), and the 
»old« version, Eq. (8), by means of a classical-mechanical analogue. 

For this purpose, we first derive the »classical« limit of these relations, 
i. e. h-+ 0. Then from the well-known approximation (8) follows: 

/\ 
Qold (w) oc E0

2 • {J • w 2 
• C (w) 

which is simply the Fourier transform of the following equation: 

Qold (t) oc E0
2 • {J • { - ~ C (t)} 

c)t2 

In the same way from the generalized FDT, Eq. (7) follows 

/\ /\ 
Q (w) ex E0

2 • {J • { w2 • C (w) - - C' (w)} 

and by Fourier transformation 

(Al) 

(Ala) 

(A2) 

Q (t) cc E 2 • {J · {-~ C (t) - C' (t)} (A2a) 
0 dt2 

. . 
where C (t) = (M (0) · M (t)) and C' (t) = (M (0) · M (t)) 
In the classical limit the products appearing in the correlation functions do not 
need to be symmetrized. 

As an example we consider a quantity of molecules with permanent electrical 
~ . 

dipole moment M being dissolved in a nonpolar solvent. Then M (t) and M (t) in the 
~ __. 

relations (Ala) and (A2a), respectively, are the projections of M (t) and M (t), res-
~ 

pectively, onto the space axis marked out by the external field E. 

At first we can formally assign a fictitious »mass point« with the »space coordi

nate« M (t), the »speed coordinate« M (t) and the »mass« µ to each molecule. µ will be a 
function of the molecular momentum of inertia. With it the molecular reorientational 
motion is described by the one-dimensional motion of a »point«. 

After this we will consider the relations (Ala) and (A2a) only within »small« 
time intervals M, so that . . 

M (t0 ) = M (t0 + t), M (t0 ) = M (t0 + t), M (t0 ) = M (t0 + t) (A3) 

in the time interval I t - t 0 I < M 

will be valid for all fictitious points. 

The starting point for our mechanical example is represented by the following 
Newtonian dynamical equation: 

.. au \ · µ · M (t) = - - - r · M (t) 
dM t 

(A4) 

which will be assumed to describe the motion of the fictive point during the time 
interval t

0 
< t < t

0 
+ M. The first term on the right-hand side represents the 

conservative force component, whereas the second term describes a dissipative 
component, e.g. friction46. 
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We multiply Eq. (A4) from the left by M (t) and obtain 

µ M (t) · M (t) = - M (t) · au - M (t) · rM (t) 
aM 

(A5) 

The potential U can be considered as being harmonic, because of the following 
reason: If the solvent is thought to be »frozen« U describes the »potential well« 
containing the fictitious point under consideration. As usual, in the first approximation 
this point accomplishes a harmonic oscillation during the preassumed short time 
. . au 
interval M. Therefore, it holds 2U = aM · M, and Eq. (A5) yields 

µ · M (t) · M (t) = -2 U - M (t) · rM (t) (A6) 

We like to compare this result with the »classical limit« (Ala) of the incomplete 
FDT. Using the approximation 

a2 
Tt2° C (t) = (M (0) · M (t)) , 

(see Sec. 3) we obtain from (Ala) 

Qold (t) ex E0
2 • (J · {- ( M (0) • M (t})} (A7) 

With the approximation (A3) and with the stationarity condition for the time 
correlation functions we obtain from (A 7) by multiplication with µ 

Qold (t) ex: E0
2 

• (J {-(µM (t) · M (t))} (AS) 

The right-hand side can be further evaluated with the aid of the classical-me
chanical expression (A6) and its ensemble average. Thus from (A6) and (AS) follows 

Q0 1d (t) oc E0
2 • fJ · {2 (U) + (M (t) · rM (t))} (A9) 

Now we realize an essential weakness of the usual incomplete version (3) of the 
FDT: In connection with our example Eq. (A4) a non-vanishing dissipation Q01d (t) 

is predicted even if no dissipative forces are acting on the system! This absurd result 
follows from relation (A9) by setting the friction force equal to zero, i. e. r = 0. 
Obviously something is wrong. 

Now we will derive the analogous result from the generalized FDT (7) and its 
classical limit (A2a). 

A multiplication of relation (A2a) with µ and the approximation (A3) yield 

Q (t) oc E0
2 • (J · {- (µM (t) · M (t)) - (µM (t) M (t))} (AlO) 

The first term on the right-hand side was calculated above, see relation (AS). 
The second term represents twice the ensemble average of the »kinetic energy« T 
of one of our fictive points, 

(ftM (t) · M (t) ) = 2 ( T). 

Based upon the Virial theorem for the dynamic process (A6) it holds for ergodic 
ensembles (U) = (T) 46 and thus 

. . 
Q (t) oo E0

2 • (J · {2 (U) + (M (t) · rM (t)) - 2 (T ) } =:: E0
2 • (J • (M (t) · rM (t)) 

The correlation function on the right-hand side does not vanish; this is due to 
the fact that the friction coefficient r shows the same behavior under time reversal 

as the quantity M; see Eq. (A4). Now we obtain the assumed result : In the special 
case of no dissipation forces acting on the system, the dissipation Q (t) vanishes. 

This result is physically meaningful. 
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IZVLEOEK 

StatistiCni opis dinamicnih procesov molekul v tekocinah. Uporaba absorpcijske 
spektroskopije v daljnem infrardecem obmocju 

C. A. Chatzidimitriou-Dreismann in Ernst Lippert 

Z absorpcijsko spektroskopijo v daljnjem infrardecem podrocju (FIR-far IR), se 
da zelo uspesno zasledovati dinamiko molekulskega gibanja v raztopinah in konden
ziranih plinih v okviru teorije linearnega odziva (linear response· theory LRT), ki 
jo je vpeljal Kubo. Dinamiko molekule opazujemo posredno preko njenega perma-

-> 
nentnega dipolnega momenta M, ki je v primeru, ko se molekula nahaja v zuna
njem elektromagnenem polju, sklopljen s njim, kar popise semiklasieni interakcijski 
Hamiltonian. 

Clanek obravnava fizikalno zasnovo, izpeljavo in veljavnost posplosenega fluk
tuacijsko-disipacijskega teorema (FDT), ki je v zadnjem casu znatno prispeval k sta
tistieni mehaniki neravnotefoih stanj. 

Pokazano je, da so za disipacijo iradijacije odgovorni: kratkozivost operatorja, 
ki sklaplja sistem z iradiacijskim poljem, spontane fluktuacije, ki jih kaze stati
sticni operator v mikroskopski casovni skali in vpeljava sklopitve sistema s termicno 
kopeljo v formalizmu Kubove teorije, ki jo je predpostavil van Vliet. 

Posledica tega je easovna odvisnost statistienega operatorja na kratkoeasovni 
skali. 

Posplosen FDT pa predstavlja v okviru mikroskopske Kubove teorije mikro
skopsko interpretacijo. Prigoginovega teorema v minimalni tvorbi entropije (CTMEP). 

Teorija je pripravna za interpretacijo rezultatov, ki jih dobimo iz: vibracijsko
-rotacijskih spektrov v srednjem infrardecem podrocju in to tekocin ali kondenzi
ranih plinov, spektrov adsorbiranih molekul na povrsinah, dela Ramanskih spektrov 
in eksperimentov z Rayleighovim sipanjem, ni pa ustrezna v primeru, ko je dipolni 

-> 
moment M makroskopska kolicina, iradiacijsko polje pa ima visoko frekvenco in 
v primeru UV spektroskopije, ko so elektronski prehodi dosti bolj kratkozivi, kot 
so ustrezni vibracijsko-orientacijski procesi molekul v raztopinah in kondenziranih 
plinih. 




