1,587 research outputs found

    Plans for wind energy system simulation

    Get PDF
    A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations

    Wind energy system time-domain (WEST) analyzers

    Get PDF
    A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data

    ECoG-based short-range recurrent stimulation techniques to stabilize tissue at risk of progressive damage: Theory based on clinical observations

    Get PDF
    We introduce theoretical concepts based on chaos control to stabilize in acute stroke the tissue at risk of progressive damage by preventing adverse effects of waves of mass neuronal depolarization. Moreover, we present clinical electrocorticography (ECoG) recordings of relevant signals suggested for the feedback control. The recordings are performed in combination with novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry in patients with aneurysmal subarachnoid haemorrhage (aSAH). In aSAH patients waves of spreading depolarization (SD) have a high incidence and cause hypoxia in tissue at risk, and, importantly, the haemodynamic response is the inverse of that seen in healthy tissue. In previous clinical studies, clusters of prolonged SDs have been measured in aSAH patients in close proximity to structural brain damage as assessed by neuroimaging, and, in theoretical studies, a mechanism was presented, suggesting how a failure of internal feedback could be a putative mechanism of such SD cluster patterns in acute stroke. 

This failing internal feedback control is now suggested to be replaced by ECoG-based short-range recurrent functional stimulation that initiates the normal hyperperfusion haemodynamic response in a demand-controlled way and stabilizes the tissue at risk during the critical phase of SD passage. The suggested method has three key features: (i) it is short-range, i.e., in the order of the distance of the ECoG electrode strip, (ii) it is demand-controlled, and (iii) it uses no prior knowledge of the target state, in particular, it adapts to conditions in the healthy physiological range. On-demand type stimulation provides minimal invasive feedback as the control force is off when the target state is reached, i.e., the tissue at risk is without SD or it is back to the physiological range (out of risk). These last two features (ii-iii) are shared with classical methods of chaos control, where major progress was made in the last years with respect to extensions for spatio-temporal wave patterns. A detailed bifurcation analysis of the nonlinear model is presented, in particular, the SD cluster forming cortical state is suggested to be caused by a delay-induced saddle-node bifurcation.
&#xa

    Smartphone-Based Prenatal Education for Parents with Preterm Birth Risk Factors

    Get PDF
    Objective To develop an educational mobile application (app) for expectant parents diagnosed with risk factors for premature birth. Methods Parent and medical advisory panels delineated the vision for the app. The app helps prepare for preterm birth. For pilot testing, obstetricians offered the app between 18–22 weeks gestational age to English speaking parents with risk factors for preterm birth. After 4 weeks of use, each participant completed a questionnaire. The software tracked topics accessed and duration of use. Results For pilot testing, 31 participants were recruited and 28 completed the questionnaire. After app utilization, participants reported heightened awareness of preterm birth (93%), more discussion of pregnancy or prematurity issues with partner (86%), increased questions at clinic visits (43%), and increased anxiety (21%). Participants reported receiving more prematurity information from the app than from their healthcare providers. The 15 participants for whom tracking data was available accessed the app for an average of 8 h. Conclusion Parents with increased risk for preterm birth may benefit from this mobile app educational program. Practice implications If the pregnancy results in preterm birth hospitalization, parents would have built a foundation of knowledge to make informed medical care choices

    Overview of Immunosuppression in Renal Transplantation

    Get PDF

    Treelike Decompositions for Transductions of Sparse Graphs

    Get PDF
    corecore