11 research outputs found

    Triggering of an Epidemic Outbreak via Long-Range Atmospheric Transport of Bio-Aerosols—Application to a Hypothetical Case for COVID-19

    No full text
    In the present work, we investigate the possibility that long-range airborne transport of infectious aerosols could initiate an epidemic outbreak at distances downwind beyond one hundred kilometers. For this, we have developed a simple atmospheric transport box model, which, for a hypothetical case of a COVID-19 outbreak, was compared to a more sophisticated three-dimensional transport-dispersion model (HYSPLIT) calculation. Coupled with an extended Wells–Riley description of infection airborne spread, it shows that the very low probability of outdoor transmission can be compensated for by high numbers and densities of infected and susceptible people in the source upwind and in the target downwind, respectively, such as occur in large urban areas. This may result in the creation of a few primary cases. It is worth pointing out that the probability of being infected remains very small at the individual level. Therefore, this process alone, which depends on population sizes, geography, seasonality, and meteorology, can only “trigger” an epidemic, which could then spread via the standard infection routes

    US emissions of HFC-134a derived for 2008-2012 from an extensive flask-air sampling network

    Get PDF
    U.S. national and regional emissions of HFC-134a are derived for 2008-2012 based on atmospheric observations from ground and aircraft sites across the U.S. and a newly developed regional inverse model. Synthetic data experiments were first conducted to optimize the model assimilation design and to assess model-data mismatch errors and prior flux error covariances computed using a maximum likelihood estimation technique. The synthetic data experiments also tested the sensitivity of derived national and regional emissions to a range of assumed prior emissions, with the goal of designing a system that was minimally reliant on the prior. We then explored the influence of additional sources of error in inversions with actual observations, such as those associated with background mole fractions and transport uncertainties. Estimated emissions of HFC-134a range from 52 to 61 Gg yr(-1) for the contiguous U.S. during 2008-2012 for inversions using air transport from Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model driven by the 12km resolution meteorogical data from North American Mesoscale Forecast System (NAM12) and all tested combinations of prior emissions and background mole fractions. Estimated emissions for 2008-2010 were 20% lower when specifying alternative transport from Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Research and Forecasting (WRF) meteorology. Our estimates (for HYSPLIT-NAM12) are consistent with annual emissions reported by U.S. Environmental Protection Agency for the full study interval. The results suggest a 10-20% drop in U.S. national HFC-134a emission in 2009 coincident with a reduction in transportation-related fossil fuel CO2 emissions, perhaps related to the economic recession. All inversions show seasonal variation in national HFC-134a emissions in all years, with summer emissions greater than winter emissions by 20-50%

    Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Get PDF
    Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0)) were generally within ∌10% of measurements in the Great Lakes region. The model overestimated non-Hg(0) concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition), while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%). The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations) for Lake Erie and 11% (range 6–13%) for Lake Superior. These results illustrate the importance of atmospheric chemistry, as well as emissions strength, speciation, and proximity, to the amount and source-attribution of mercury deposition
    corecore