1,581 research outputs found

    Adapting tissue-engineered in vitro CNS models for high-throughput study of neurodegeneration

    Get PDF
    Neurodegenerative conditions remain difficult to treat, with the continuing failure to see therapeutic research successfully advance to clinical trials. One of the obstacles that must be overcome is to develop enhanced models of disease. Tissue engineering techniques enable us to create organised artificial central nervous system tissue that has the potential to improve the drug development process. This study presents a replicable model of neurodegenerative pathology through the use of engineered neural tissue co-cultures that can incorporate cells from various sources and allow degeneration and protection of neurons to be observed easily and measured, following exposure to neurotoxic compounds - okadaic acid and 1-methyl-4-phenylpyridinium. Furthermore, the technology has been miniaturised through development of a mould with 6 mm length that recreates the advantageous features of engineered neural tissue co-cultures at a scale suitable for commercial research and development. Integration of human-derived induced pluripotent stem cells aids more accurate modelling of human diseases, creating new possibilities for engineered neural tissue co-cultures and their use in drug screening

    Characterization of mouse neuro-urological dynamics in a novel decerebrate arterially perfused mouse (DAPM) preparation

    Get PDF
    Aim: To develop the decerebrate arterially perfused mouse (DAPM) preparation, a novel voiding model of the lower urinary tract (LUT) that enables in vitro-like access with in vivo-like neural connectivity. Methods: Adult male mice were decerebrated and arterially perfused with a carbogenated, Ringer’s solution to establish the DAPM. To allow distinction between central and peripheral actions of interventions, experiments were conducted in both the DAPM and in a “pithed” DAPM which has no brainstem or spinal cord control. Results: Functional micturition cycles were observed in response to bladder filling. During each void, the bladder showed strong contractions and the external urethral sphincter (EUS) showed bursting activity. Both the frequency and amplitude of non-voiding contractions (NVCs) in DAPM and putative micromotions (pMM) in pithed DAPM increased with bladder filling. Vasopressin (>400 pM) caused dyssynergy of the LUT resulting in retention in DAPM as it increased tonic EUS activity and basal bladder pressure in a dose-dependent manner (basal pressure increase also noted in pithed DAPM). Both neuromuscular blockade (vecuronium) and autonomic ganglion blockade (hexamethonium), initially caused incomplete voiding, and both drugs eventually stopped voiding in DAPM. Intravesical acetic acid (0.2%) decreased the micturition interval. Recordings from the pelvic nerve in the pithed DAPM showed bladder distention-induced activity in the non-noxious range which was associated with pMM. Conclusions: This study demonstrates the utility of the DAPM which allows a detailed characterization of LUT function in mice

    Developing new ways to assess neural control of pelvic organ function in spinal conditions: ICI-RS 2023

    Get PDF
    Objectives: Several central nervous system (CNS) centers affect muscle groups of the lower urinary tract (LUT) and anorectal tract (ART) via autonomic and somatic pathways, working in different modes (storage or expulsion). Hence spinal cord dysfunction can affect the LUT and ART by several possible mechanisms. Methods: This review reports the discussions of a workshop at the 2023 meeting of the International Consultation on Incontinence Research Society, which reviewed uncertainties and research priorities of spinal dysfunction. Results: Discussion focussed on the levator ani nerve, mechanisms underpinning sensory function and sensation, functional imaging, dyssynergia, and experimental models. The following key research questions were identified. (1) Clinically, how can we evaluate the levator ani muscle to support assessment and identify prognosis for effective treatment selection? (2) How can we reliably measure levator ani tone? (3) How can we evaluate sensory information and sensation for the LUT and the ART? (4) What is the role of functional CNS imaging in development of scientific insights and clinical evaluation? (5) What is the relationship of detrusor sphincter dyssynergia to renal failure? Conclusions: Spinal cord dysfunction can fundamentally disrupt LUT and ART function, with considerable clinical impact. The evaluation needs to reflect the full scope of potential problems, and new clinical and diagnostic approaches are needed, for prognosis and treatment. The preclinical science evaluating spinal cord function in both LUT and ART storage and elimination remains a major priority, even though it is a challenging experimental context. Without this underpinning evidence, development of new clinical evidence may be held back

    Advanced Multilevel Node Separator Algorithms

    Full text link
    A node separator of a graph is a subset S of the nodes such that removing S and its incident edges divides the graph into two disconnected components of about equal size. In this work, we introduce novel algorithms to find small node separators in large graphs. With focus on solution quality, we introduce novel flow-based local search algorithms which are integrated in a multilevel framework. In addition, we transfer techniques successfully used in the graph partitioning field. This includes the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly localized local search and iterated multilevel cycles to improve solution quality even further. Experiments indicate that flow-based local search algorithms on its own in a multilevel framework are already highly competitive in terms of separator quality. Adding additional local search algorithms further improves solution quality. Our strongest configuration almost always outperforms competing systems while on average computing 10% and 62% smaller separators than Metis and Scotch, respectively

    The Late Miocene-Early Pliocene Biogenic Bloom: An Integrated Study in the Tasman Sea

    Get PDF
    The Late Miocene-Early Pliocene Biogenic Bloom (∼9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well-oxygenated bottom currents to weaker, oxygen-depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints

    The health risks of ART

    Full text link

    Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos

    Get PDF
    Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape. Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally. Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development

    A pulmonary mass with invasion into the heart

    Get PDF
    We describe the case of a 58 year old woman who presented with bronchial atypical carcinoid found at surgery to invade the left atrium along the pulmonary veins. A right pneumonectomy and removal of a portion of the left atrium was performed. The patient made an excellent post operative recovery. Three years later she presented in acute respiratory failure secondary to local recurrence. This is first case described in which recurrence after resection of bronchial carcinoid metastatic to the heart is described

    Mapping the genetic architecture of gene expression in human liver

    Get PDF
    Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. © 2008 Schadt et al
    corecore