355 research outputs found

    Ion temperature anisotropy across a magnetotail reconnection jet

    Get PDF
    A significant fraction of the energy released by magnetotail reconnection appears to go into ion heating, but this heating is generally anisotropic. We examine ARTEMIS dual-spacecraft observations of a long-duration magnetotail exhaust generated by anti-parallel reconnection in conjunction with Particle-In-Cell simulations, showing spatial variations in the anisotropy across the outflow far (> 100di) downstream of the X-line. A consistent pattern is found in both the spacecraft data and the simulations: Whilst the total temperature across the exhaust is rather constant, near the boundaries Ti,|| dominates. The plasma is well-above the firehose threshold within patchy spatial regions at |BX| ∈ [0.1, 0.5]B0, suggesting that the drive for the instability is strong and the instability is too weak to relax the anisotropy. At the mid-plane (|BX|0.1 B0), Ti,⊄ > Ti,|| and ions undergo Speiser-like motion despite the large distance from the X-line

    MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved.We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was ~10km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3ÎŒA/m2) electron currents, a super-AlfvĂ©nic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line

    Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet

    Get PDF
    During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale Heliospheric Current Sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during Encounters 1, 4 and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic field lines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent with the reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests that reconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossings of the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solar radii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is much thicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absence of reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which are associated with ‘switchbacks’. Thus, the PSP findings suggest that large-scale dynamics either locally in the solar wind or within the coronal source of the HCS (at the tip of helmet streamers) plays a critical role in triggering reconnection onset

    Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?

    Get PDF
    Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35-40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species

    Highly structured slow solar wind emerging from an equatorial coronal hole

    Get PDF
    International audienceDuring the solar minimum, when the Sun is at its least active, the solar wind(1,2) is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvenic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind(3) of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain(4); theories and observations suggest that they may originate at the tips of helmet streamers(5,6), from interchange reconnection near coronal hole boundaries(7,8), or within coronal holes with highly diverging magnetic fields(9,10). The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfven-wave turbulence(11,12), heating by reconnection in nanoflares(13), ion cyclotron wave heating(14) and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe(15) at 36 to 54 solar radii that show evidence of slow Alfvenic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities(10,16) that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind

    Initial response of young people with thyrotoxicosis to block and replace or dose titration thionamide

    Get PDF
    \ua9 2022 The authors Published by Bioscientifica Ltd.Objective: Patients with thyrotoxicosis are treated with anti-thyroid drug (ATD) using block and replace (BR) or a smaller, titrated dose of ATD (dose titration, DT). Design: A multi-centre, phase III, open-label trial of newly diagnosed paediatric thyrotoxicosis patients randomised to BR/DT. We compared the biochemical response to BR/DT in the first 6 months of therapy. Methods: Patients commenced 0.75 mg/kg carbimazole (CBZ) daily with randomisation to BR/DT. We examined baseline patient characteristics, CBZ dose, time to serum thyroid-stimulating hormone (TSH)/free thyroxine (FT4) normalisation and BMI Z-score change. Results: There were 80 patients (baseline) and 78 patients (61 female) at 6 months. Mean CBZ dose was 0.9 mg/kg/day (BR) and 0.5 mg/kg/day (DT). There was no difference in time to non-suppressed TSH concentration; 16 of 39 patients (BR) and 11 of 39 (DT) had suppressed TSH at 6 months. Patients with suppressed TSH had higher mean baseline FT4 levels (72.7 vs 51.7 pmol/L; 95% CI for difference 1.73, 31.7; P = 0.029). Time to normalise FT4 levels was reduced in DT (log-rank test, P = 0.049) with 50% attaining normal FT4 at 28 days (95% CI 25, 32) vs 35 days in BR (95% CI 28, 58). Mean BMI Z-score increased from 0.10 to 0.81 at 6 months (95% CI for difference 0.57, 0.86; P < 0.001) and was greatest in patients with higher baseline FT4 concentrations. Conclusions: DT-treated patients normalised FT4 concentrations more quickly than BR. Overall, 94% of patients have normal FT4 levels after 6 months, but 33% still have TSH suppression. Excessive weight gain occurs with both BR and DT therapy

    Genome-Wide Analysis of Natural Selection on Human Cis-Elements

    Get PDF
    Background: It has been speculated that the polymorphisms in the non-coding portion of the human genome underlie much of the phenotypic variability among humans and between humans and other primates. If so, these genomic regions may be undergoing rapid evolutionary change, due in part to natural selection. However, the non-coding region is a heterogeneous mix of functional and non-functional regions. Furthermore, the functional regions are comprised of a variety of different types of elements, each under potentially different selection regimes. Findings and Conclusions: Using the HapMap and Perlegen polymorphism data that map to a stringent set of putative binding sites in human proximal promoters, we apply the Derived Allele Frequency distribution test of neutrality to provide evidence that many human-specific and primate-specific binding sites are likely evolving under positive selection. We also discuss inherent limitations of publicly available human SNP datasets that complicate the inference of selection pressures. Finally, we show that the genes whose proximal binding sites contain high frequency derived alleles are enriched for positive regulation of protein metabolism and developmental processes. Thus our genome-scale investigation provide
    • 

    corecore