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[1] We surveyed 79 magnetopause reconnection exhausts
detected by the THEMIS spacecraft to investigate how the
amount and anisotropy of electron bulk heating produced
by reconnection depend on the inflow boundary conditions.
We find that the amount of heating, ΔTe, is correlated with
the asymmetric Alfvén speed, VAL,asym, based on the
reconnecting magnetic field and the plasma density
measured in both the high-density magnetosheath and low-
density magnetospheric inflow regions. Best fit to the data
produces the empirical relation ΔTe = 0.017 miVAL,asym

2,
indicating that the amount of heating is proportional to the
inflowing magnetic energy per proton-electron pair, with
~1.7% of the energy being converted into electron heating.
This finding, generalized to symmetric reconnection, could
account for the lack of electron heating in typical solar
wind exhausts at 1AU, as well as strong heating to keV
energies common in magnetotail exhausts. We also find
that the guide field suppresses perpendicular heating.
Citation: Phan, T. D., M. A. Shay, J. T. Gosling, M. Fujimoto,
J. F. Drake, G. Paschmann, M. Oieroset, J. P. Eastwood, and
V. Angelopoulos (2013), Electron bulk heating in magnetic
reconnection at Earth’s magnetopause: Dependence on the inflow
Alfvén speed and magnetic shear, Geophys. Res. Lett., 40,
4475–4480, doi:10.1002/grl.50917.

1. Introduction

[2] Magnetic reconnection is a universal plasma process
that converts magnetic energy into plasma jetting and ther-
mal and suprathermal plasma heating. While plasma jetting
is well established, both theoretically and observationally,
the mechanisms whereby plasma (especially electron)
heating occur in collisionless plasma is still poorly under-
stood. The large majority of observational and theoretical
studies to date have been focused on suprathermal electron
energization, not on bulk heating. While suprathermal elec-
trons are important in their own right, a more basic

unresolved problem is the reconnection-associated bulk
heating of electrons, i.e., the heating of the thermal popula-
tion, which contains most of the electrons.
[3] In situ observations in the magnetosphere, solar wind,

and magnetosheath have produced conflicting findings regard-
ing the presence or absence of electron heating in reconnection
exhausts, as well as the anisotropy of heating. Substantial elec-
tron bulk heating (in the 600 eV to 2 keV range) is typically
observed in reconnection exhausts in the magnetotail (J. Liu,
private communication, 2013). Electron bulk heating of tens
of eV (i.e., two orders of magnitude lower than tail heating)
has also been reported at the magnetopause [e.g., Gosling
et al., 1986] and recently in a magnetosheath reconnection
exhaust [Phan et al., 2011]. Contrary to these reports and the
expectation that reconnection always results in bulk electron
heating,Gosling et al. [2007] reported neither thermal electron
heating nor suprathermal electron energization in several solar
wind reconnection exhausts they identified.
[4] There are also differences in the reported anisotropy of

electron bulk heating. Heating observed in near-Earth
magnetotail exhausts tends to be roughly isotropic [e.g.,
Chen et al., 2008], while a magnetosheath exhaust reported
by Phan et al. [2011] showed only parallel heating. These
striking differences in the electron heating properties in
different regions in space suggest that the degree and anisot-
ropy of electron heating depend strongly on plasma parame-
ter regimes and/or boundary conditions.
[5] In this paper, we report the results of a statistical study

of electron bulk heating at the magnetopause based on 79
reconnection exhausts detected by the THEMIS spacecraft.
We find that the degree of heating depends on the inflow
Alfvén speed, while the heating anisotropy depends on
the guide field/magnetic shear.

2. THEMIS Data Sets

[6] The data set consists of previously reported dayside
low-latitude reconnection exhausts detected by THEMIS D
in 2008 [Phan et al., 2013], as well as exhausts from
THEMIS E in 2009. The reconnection exhausts were identi-
fied based on the presence of accelerated magnetosheath
plasma flows across the magnetosheath edge of the magneto-
pause, with correlated or anticorrelated changes in the
velocity and magnetic field vectors. In events that showed
the presence of accelerated flows but where the agreement
with the predicted flows from the Walen relation [e.g.,
Paschmann et al., 1986] was less than 50%, we further
required the presence of interpenetrating magnetosheath
and cold magnetospheric ions to ensure magnetic connection
across the magnetopause. In order to investigate the electron
temperature change across the magnetopause, we required
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that the inflow magnetosheath electron temperature be stable
and free of leaked high-energy magnetospheric electrons. With
these restrictions, 32 THEMIS D and 47 THEMIS E exhausts
were found to be appropriate for this study.
[7] The ion and electron temperatures used in the present

study are moments of the distributions. As will be shown
below, the electron temperature moment is generally repre-
sentative of the core (Maxwellian) part of the distribution.

3. Magnetopause Reconnection Exhausts With
and Without Substantial Electron Heating

[8] In this section, we describe two magnetopause exhausts
to illustrate the varying amount of electron heating in magne-
topause reconnection as well as our methodology in the
statistical survey to evaluate the amount of bulk heating of
magnetosheath electrons entering into the exhaust and to
determine the inflow boundary conditions.

3.1. A Reconnection Exhaust With Substantial Electron
Bulk Heating

[9] The left panels of Figure 1 show an outbound magneto-
pause crossing by THEMIS D at low latitude near the
subsolar point (11.9 MLT). We describe the event backward
in time, going from the magnetosheath to the magnetosphere as
we investigate the heating of the entering magnetosheath elec-
trons. A plasma jet directed in the –L direction and having a
flow speed of ~400 km/s relative to that in the magnetosheath
(Figure 1b) was embedded in the magnetopause current layer
(15:12–15:14:30 UT, between the leftmost red vertical dotted
line and the rightmost black dashed line). The magnetic shear
across the magnetopause was ~173° (Figure 1a).
[10] Across the magnetosheath edge of the magnetopause,

both parallel and perpendicular electron temperatures increased
abruptly, from ~50 eV (in the magnetosheath) to ~120 eV, and
increased even further deeper within the exhaust. The heating
of the entering magnetosheath electrons is also evident in the
electron energy-time spectrogram (Figure 1e), which shows
an upward energy shift at the magnetosheath edge of the
magnetopause. Figure 1i shows representative electron
distributions in the magnetosheath (black curve) and in the
reconnection exhaust (red curve); the overlaid Maxwellian
dashed curves correspond to the density and temperature mo-
ments of the entire electron distributions. The good fit between
the Maxwellians and the low-energy electron spectra indicates
that the temperature is dominated by the core electrons of
magnetosheath origin, with suprathermal electrons (> 300 eV
in the magnetosheath and> 1 keV in the exhaust) contri-
buting little to the temperature moments.
[11] Figure 1f shows that the fluxes of 10 keV and 5 keV

electrons (mostly of magnetospheric origin) decreased
sharply at the magnetospheric edge of the magnetopause, at
~15:12:05 UT, while a small amount remained until
~15:13:10 UT. Thus, to study the amount of magnetosheath
electron heating that occurred, we only consider the interval
from the magnetosheath edge of the magnetopause to the
location just before the magnetospheric electrons first appear
(at 15:13:10 UT, marked by the green vertical line) to avoid
contamination from magnetospheric electrons. The location
where magnetospheric electrons first appear also marks the
location where the magnetosheath density drops significantly.
The average and standard deviation of the exhaust electron
temperature in this exhaust interval were ~ 115 ± 14 eV;

thus, the average amount of electron heating for this
event was ΔTe ~70 ± 14 eV. If we consider the parallel and
perpendicular heating separately, the amount of parallel
and perpendicular heating were ΔTe|| = 87 ± 11 eV and
ΔTe⊥ = 61 ± 16 eV, respectively.
[12] The magnetosheath boundary conditions were deter-

mined by averaging over a stable magnetosheath interval im-
mediately adjacent to the magnetopause (between the two red
vertical dotted lines). For this event, the magnetosheath ion
and electron β based on the reconnecting magnetic field
component were 0.44 and 0.051, respectively, and the ion
Alfvén speed based on the reconnecting field was 414 km/s.

3.2. A Reconnection Exhaust With Essentially no
Electron Bulk Heating

[13] The right panels of Figure 1 show an exhaust observed
during an inbound magnetopause crossing by THEMIS D at
low latitude near the subsolar point (11.5 MLT). The mag-
netic shear across the magnetopause was ~90° (Figure 1j).
Embedded in the magnetopause current layer (15:44:43–
15:45:20 UT, between the rightmost red vertical dotted line
and the leftmost black dashed line) was a plasma jet flowing
in the �L direction with a speed (relative to magnetosheath
flow) close to 120 km/s (Figure 1k).
[14] In contrast to the previous event, the electron temper-

ature did not increase at the magnetosheath edge of the
exhaust and remained roughly constant until 15:45:12 UT
when hot (5–10 keV) magnetospheric electrons began to ap-
pear (Figure 1o). The lack of bulk heating of entering
magnetosheath electrons is also evident in the electron spec-
trogram, which shows essentially no variations across the
magnetopause and exhaust. Similarly, Figure 1r shows that
the electron spectra in the magnetosheath (black curve) and
in the reconnection exhaust (red curve) were nearly identical.
ΔTe for this exhaust was only 1.2 ± 0.7 eV and ΔTe|| and ΔTe⊥
were only 0.6 ± 0.4 eV and 1.7 ± 1.3 eV, respectively.
[15] For this event, the magnetosheath ion and electron βL

based on the reconnecting magnetic field component (aver-
aged over the interval between the two red dotted lines) were
~6.4 and ~1.65, respectively, and the ion Alfvén speed based
on the reconnecting field was ~59 km/s.
[16] The key parameters responsible for the differences in

bulk electron heating in the above-described events appear
to be the magnetosheath electron β and Alfvén speed, and
the current sheet shear angle. The purpose of the statistical
survey below is to reveal which of these or other parameters
control electron bulk heating and anisotropy in magneto-
pause reconnection exhausts.

4. Statistical Survey

4.1. Parameters Controlling the Degree of Electron
Bulk Heating

[17] Using the set of 79 reconnection exhausts described
in section 2, we examined how ΔTe depends on plasma
and field conditions on the opposite sides of the
magnetopause. We found that ΔTe does not depend on any
purely magnetospheric parameters but does clearly depend
on a number of magnetosheath parameters. The electron β
based on the number density Nsh, electron temperature
Te,sh, and the reconnecting field component BL,sh

measured n the magnetosheath adjacent to the magneto-
pause (βeL,sh = 2μ0NshkTe,sh/BL,sh

2) is one such parameter.
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Figure 2a shows that ΔTe tended to decrease with increasing
βeL,sh. We also examined the dependence of ΔTe on each of
the separate parameters contributing to βeL,sh. ΔTe tended to
increase with increasing BL,sh (Figure 2b) and tended to
decrease with increasing Nsh (Figure 2c). However, there
was no systematic dependence on Te,sh (Figure 2d).

[18] Since ΔTe depends on the magnetosheath reconnecting
field and density but not on the magnetosheath electron
temperature, the genuine controlling parameter is likely to be
the Alfvén speed, not β. Figure 2e shows that the electron bulk
heating is indeed well correlated with the Alfvén speed based
on the reconnecting field in the magnetosheath, VAL,sh. In fact,

Figure 1. Examples of electron heating (left panels) and no heating (right panels) in magnetopause reconnection. (a, j) the
magnetic field in LMN minimum variance coordinates [Sonnerup and Cahill, 1967], (b, k) ion velocity in LMN, (c, l) ion
number density, (d, m) parallel and perpendicular electron temperatures, (e, n) electron energy spectrogram in energy flux
(eV s�1 cm�2 ster�1 eV�1), (f, o) energy flux of 5 keV and 10 keV electrons, (g, p) ion and electron β based on the
reconnecting field component BL, (h, q) Alfvén velocity based on BL, (i, r) electron spectra in the magnetosheath (black)
and in the exhaust (red), with overlaid Maxwellian distributions using measured density and temperature moments. Labels
“1” and “2” under Figures 1h and 1q point to the times of the cuts shown in Figures 1i and 1r. The (dotted) red and (dashed)
black pairs of vertical lines denote the magnetosheath and magnetospheric intervals that define the boundary conditions of the
magnetopause current sheet. The green vertical line denotes the innermost location of the exhaust for the computation of the
average exhaust electron temperature.
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the dependence on VAL,sh is clearer (less data scatter) than on
the reconnecting field and plasma density individually. The
dependence on VAL,sh, however, is not linear. To deduce the
power of the VAL,sheath dependence, we fit the data to the func-
tion ΔTe = constant*VAL,sh

power. The best fit gives a power of
1.84, which is close to 2.
[19] Figure 2f shows, however, that ΔTe correlates equally

well with the combined inflow Alfvén speed in asymmetric
reconnection, VAL,asym= [BL,shBL,sph(BL,sh +BL,sph)/μ0(ρshBL,

sph + ρsphBL,sh)]
0.5, where ρ is ion mass density and subscript

“sph” denotes the magnetosphere [Cassak and Shay, 2007;
Swisdak and Drake, 2007]. Fitting the data to the function
ΔTe = constant*VAL,asym

power produces a power of 2.02 (blue

curve in Figure 2f), which is essentially 2. Refitting the data
to VAL,asym

2 gives ΔTe= 1.7×10
�4 VAL,asym

2 (red curve in
Figure 2f), where ΔTe and VAL,asym are in units of eV and
km/s, respectively. The significance of the dependence on
VAL,asym

2 is that miVAL,asym
2 represents the combined incom-

ing magnetic energy per proton-electron pair from both sides
of the current sheet, where mi is the proton mass. The empiri-
cal relation can be reexpressed as ΔTe = 0.017 miVAL,asym

2

(Figure 2g). The linear relationship between ΔTe and the
inflow energy indicates that the amount of bulk electron
heating is simply ~1.7% of the magnetic energy flowing into
the exhaust. If we had used the peak electron temperature in
the exhaust instead of the average exhaust temperature, the

Figure 2. Electron heating as a function of (a) magnetosheath electron β based on the reconnecting field component, (b)
magnetosheath reconnecting field component, (c) magnetosheath proton number density, (d) magnetosheath electron temper-
ature, (e) magnetosheath Alfvén speed based on the reconnecting field component, (f) hybrid asymmetric inflow Alfvén
speed, and (g) total inflowing magnetic energy. (h) The magnetosheath Alfvén speed versus the asymmetric Alfvén speed.
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empirical fraction would be ~2.3%. The small percentage
indicates that the electrons are a minor recipient of the released
energy in reconnection [see also Eastwood et al., 2013].
[20] Finally, the relationship between VAL,sh and VAL,asym

is shown in Figure 2h. For the present data set, the
average magnetosheath to magnetospheric density ratio is
large (~32). Thus, the incoming magnetic energy is dis-
tributed to about half the number of particles in the
strongly asymmetric case as compared to the case of sym-
metric inflows. In this highly asymmetric density regime,
VAL,asym reduces to ~ 21/2VAL,sh for approximately symmetric
inflowing magnetic fields, which is the case for large VAL,sh

events in Figure 2h.

4.2. Anisotropy of Electron Heating and the Guide
Field Dependence

[21] In addition to examining the average electron heating,
we have also investigated parallel and perpendicular electron
heating separately. Figure 3a shows that parallel heating
almost always exceeds perpendicular heating. Furthermore,
the heating anisotropy depends on the magnetic shear across the
magnetopause (i.e., the guide field). Figures 3b and 3c show that
electron heating is more isotropic (ΔTe⊥ ~ 0.79ΔTe|| on average)
for large (>150˚) magnetic shears than for low (<120o) magnetic
shears (ΔTe⊥ ~ 0.16ΔTe|| on average). There are a number of
events with ΔTe⊥< 0 (slight cooling), which tend to occur for

low magnetic shears: ΔTe⊥<0 in 7 of 15 low magnetic shear
(< 120o) cases (Figure 3c) but in only one of 38 high shear
(>150o) cases (Figure 3b).
[22] Figures 3d–3f further illustrate the effect of the guide

field on perpendicular heating. In order to separate the guide
field effect from the dependence on the Alfvén speed, we
restricted the data to 250 km/s< |VAL,asym|< 350 km/s
(although the findings are qualitatively similar for other
ranges of the Alfvén speed). Figures 3d and 3e show that
there is a trend for a decrease in perpendicular heating with
an increase in both the guide field and the guide field normal-
ized to the reconnecting field. The perpendicular heating is
almost completely suppressed when the normalized guide
field reaches unity, at least in this Alfvén speed range.
Equivalently, the amount of perpendicular heating decreases
with decreasing magnetic shear (Figure 3f).
[23] In contrast to perpendicular heating, ΔTe|| does not

show any clear dependence on the guide field or the magnetic
shear (Figures 3g–3i).
[24] Finally, the local magnetic shear measured at the

THEMIS spacecraft may or may not be the same as the shear
at the X-line because of the curved magnetopause. However,
because the present data set is comprised of dayside low-
latitude magnetopause crossings with magnetic shear> 45o,
it is expected that the X-line would be close to the subsolar
point and not far from the spacecraft. Furthermore, it is still

Figure 3. The anisotropy of electron heating and its guide field dependence. Perpendicular versus parallel heating for (a) all
79 events, (b) events with magnetic shear> 150o, and (c) events with magnetic shear< 120o. (d–f) Perpendicular heating
versus the guide field, the guide field normalized to the reconnecting field, and the magnetic shear. (g–i) Parallel heating
versus the guide field, the guide field normalized to the reconnecting field, and the magnetic shear. Figures 3d–3i are
restricted to exhausts where 250 km/s< |VAL,asym|< 350 km/s.
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an open question whether the bulk of the electron heating
occurs locally or in the vicinity of the X-line.

5. Summary and Discussions

[25] We have examined factors that appear to control
the amount of electron bulk heating and its anisotropy.
We found that the electron bulk heating is linearly
proportional to the inflowing magnetic energy per pro-
ton-electron pair, miVAL,asym

2. The empirical relation
ΔTe = 0.017 miVAL,asym

2 indicates that ~ 1.7% of the mag-
netic energy is converted into electron bulk heating. Our
finding should in principle be general and applicable to sym-
metric reconnection as well with ΔTe= 0.017 miVAL,inflow

2,
or equivalently 0.017 BL,inflow

2/μ0Ninflow, where VAL,inflow,
BL,inflow, and Ninflow are the inflow (upstream) Alfvén speed,
reconnecting field, and density on both sides of the exhaust.
The dependence of ΔTe on miVAL,inflow

2 is exactly equivalent
to ΔTe/Te,inflow = 0.034/βeL,inflow, indicating that the percentage
of electron heating relative to its initial temperature is substan-
tial in low β plasmas. However, the dependence on 1/βeL,inflow
should be viewed with care; a set of events with all equal ΔTe
could have this dependence simply because both ΔTe/Te,inflow
and βeL,inflow involve Te,inflow.
[26] We also found that parallel heating almost always

exceeds perpendicular heating and that the guide field sup-
presses perpendicular heating. This suggests that the heating
is primarily field aligned, with subsequent perpendicular
energy gain arising due to scattering or other processes, the
effectiveness of which depends on the guide field.
[27] Although our finding of the linear dependence of

electron heating on inflow energy suggests universality,
our study pertains to highly asymmetric reconnection
and covers a limited range of the inflow Alfvén speeds
(27–595 km/s). Future studies should expand to higher
Alfvén speeds as well as symmetric conditions to verify
the universality of the present findings on the scaling with
the inflow Alfvén speed as well as the percentage of inflow
energy converted into electron bulk heating. Nevertheless,
taken at their face value, these findings may be able to
account for previous conflicting findings on the amount
and anisotropy of electron heating observed in the various
regions, as we now discuss.
[28] Our finding that electron heating becomes more iso-

tropic as the guide field decreases is consistent with the near
isotropic heating in magnetotail exhausts [Chen et al., 2008],
which are generally associated with small (< 20%) guide
field. It is also consistent with a reported magnetosheath
event with the guide field roughly equal to the reconnecting
field, which showed only parallel heating but no perpendicu-
lar heating [Phan et al., 2011].
[29] The empirical heating relation may provide an expla-

nation for the reported lack of solar wind exhaust heating
[Gosling et al., 2007]. At 1 AU, the Alfvén speed of the
solar wind is typically ~ 50 km/s. For that value of VAL,
the predicted electron bulk heating based on our empirical
formula is only ~0.45 eV, which is practically unmeasurable.
However, our study suggests that stronger electron heating
should occur in the solar wind closer to the Sun where
the ambient solar wind Alfvén speed is higher, as well
as in currents sheets at 1 AU with unusually large VAL,
such as those embedded in some interplanetary coronal
mass ejections.

[30] Extrapolating our finding to the magnetotail plasma
regime, where the typical Alfvén speed in the reconnection
inflow (i.e., lobe) region is ~ 2000–3000 km/s (based on a
typical density of 0.05 cm�3 [Svenes et al., 2008] and mag-
netic field of 20–30 nT), the expected electron heating would
be in the 700 eV to 1.5 keV range, roughly consistent with
the strong electron heating typically seen in magnetotail
exhausts. Thus, although only 1.7% of the available magnetic
energy goes into electron heating, for sufficiently high inflow
Alfvén speeds, reconnection substantially increases the
electron temperature.
[31] Similarly, higher Alfvén speeds in the magnetosheath

plasma depletion layer (stronger field, lower density) associ-
ated with high-latitude magnetopause reconnection [Fuselier
et al., 2000] should lead to much stronger electron heating
compared to low-latitude reconnection.
[32] Finally, our empirical findings could potentially be

used to evaluate the role of reconnection in bulk electron
heating in solar and astrophysical contexts. For example,
in the solar coronal region where the local Alfven speed
is ~2200 km/s (based on B ~ 100 Gauss, N ~ 1010cm�3),
the electrons could be heated up to 107 K (or ~1 keV)
by reconnection.
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