108 research outputs found

    Rotation-stimulated structures in the CN and C3 comae of comet 103P/Hartley 2 around the EPOXI encounter

    Get PDF
    In late 2010 a Jupiter Family comet 103P/Hartley 2 was a subject of an intensive world-wide investigation. On UT October 20.7 the comet approached the Earth within only 0.12 AU, and on UT November 4.6 it was visited by NASA's EPOXI spacecraft. We joined this international effort and organized an observing campaign. The images of the comet were obtained through narrowband filters using the 2-m telescope of the Rozhen National Astronomical Observatory. They were taken during 4 nights around the moment of the EPOXI encounter. Image processing methods and periodicity analysis techniques were used to reveal transient coma structures and investigate their repeatability and kinematics. We observe shells, arc-, jet- and spiral-like patterns, very similar for the CN and C3 comae. The CN features expanded outwards with the sky-plane projected velocities between 0.1 to 0.3 km/s. A corkscrew structure, observed on November 6, evolved with a much higher velocity of 0.66 km/s. Photometry of the inner coma of CN shows variability with a period of 18.32+/-0.30 h (valid for the middle moment of our run, UT 2010 Nov. 5.0835), which we attribute to the nucleus rotation. This result is fully consistent with independent determinations around the same time by other teams. The pattern of repeatability is, however, not perfect, which is understendable given the suggested excitation of the rotation state, and the variability detected in CN correlates well with the cyclic changes in HCN, but only in the active phases. The revealed coma structures, along with the snapshot of the nucleus orientation obtained by EPOXI, let us estimate the spin axis orientation. We obtained RA=122 deg, Dec=+16 deg (epoch J2000.0), neglecting at this point the rotational excitation.Comment: 9 pages, 10 figures, submitted to Astron. Astrophy

    The Sources of HCN and CH3OH and the Rotational Temperature in Comet 103P/Hartley 2 from Time-Resolved Millimeter Spectroscopy

    Full text link
    One of the least understood properties of comets is the compositional structure of their nuclei, which can either be homogeneous or heterogeneous. The nucleus structure can be conveniently studied at millimeter wavelengths, using velocity-resolved spectral time series of the emission lines, obtained simultaneously for multiple molecules as the body rotates. Using this technique, we investigated the sources of CH3OH and HCN in comet 103P/Hartley 2, the target of NASA's EPOXI mission, which had an exceptionally favorable apparition in late 2010. Our monitoring with the IRAM 30 m telescope shows short-term variability of the spectral lines caused by nucleus rotation. The varying production rates generate changes in brightness by a factor of 4 for HCN and by a factor of 2 for CH3OH, and they are remarkably well correlated in time. With the addition of the velocity information from the line profiles, we identify the main sources of outgassing: two jets, oppositely directed in a radial sense, and icy grains, injected into the coma primarily through one of the jets. The mixing ratio of CH3OH and HCN is dramatically different in the two jets, which evidently shows large-scale chemical heterogeneity of the nucleus. We propose a network of identities linking the two jets with morphological features reported elsewhere, and postulate that the chemical heterogeneity may result from thermal evolution. The model-dependent average production rates are 3.5x10**26 molec/s for CH3OH and 1.25x10**25 molec/s for HCN, and their ratio of 28 is rather high but not abnormal. The rotational temperature from CH3OH varied strongly, presumably due to nucleus rotation, with the average value being 47 K.Comment: Published in ApJ 756, 80 (2012). Supplementary materials available at http://www.its.caltech.edu/~mdrahus/103p_paperII.htm

    Rotation State of Comet 103P/Hartley 2 from Radio Spectroscopy at 1 mm

    Get PDF
    The nuclei of active comets emit molecules anisotropically from discrete vents. As the nucleus rotates, we expect to observe periodic variability in the molecular emission line profiles, which can be studied through mm/submm spectroscopy. Using this technique we investigated the HCN atmosphere of comet 103P/Hartley 2, the target of NASA's EPOXI mission, which had an exceptionally favorable apparition in late 2010. We detected short-term evolution of the spectral line profile, which was stimulated by the nucleus rotation, and which provides evidence for rapid deceleration and excitation of the rotation state. The measured rate of change in the rotation period is +1.00 \pm 0.15 min per day and the period itself is 18.32 \pm 0.03 hr, both applicable at the epoch of the EPOXI encounter. Surprisingly, the spin-down efficiency is lower by two orders of magnitude than the measurement in comet 9P/Tempel 1 and the best theoretical prediction. This secures rotational stability of the comet's nucleus during the next few returns, although we anticipate a catastrophic disruption from spin-up as its ultimate fate.Comment: Accepted for publication in ApJ Letter

    Fast Rotation and Trailing Fragments of the Active Asteroid P/2012 F5 (Gibbs)

    Get PDF
    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200-m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ±\pm 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.Comment: To appear in the 2015 March 20 issue of ApJ Letter

    A photometric and spectroscopic study of WW And - an Algol-type, long period binary system with an accretion disc

    Full text link
    We have analyzed the available spectra of WW And and for the first time obtained a reasonably well defined radial velocity curve of the primary star. Combined with the available radial velocity curve of the secondary component, these data led to the first determination of the spectroscopic mass ratio of the system at q-spec = 0.16 +/- 0.03. We also determined the radius of the accretion disc from analysis of the double-peaked H-alpha emission lines. Our new, high-precision, Johnson VRI and the previously available Stromgren vby light curves were modelled with stellar and accretion disc models. A consistent model for WW And - a semidetached system harbouring an accretion disc which is optically thick in its inner region, but optically thin in the outer parts - agrees well with both spectroscopic and photometric data.Comment: Accepted by New Astronom

    CN Morphology Studies of Comet 103P/Hartley 2

    Full text link
    We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January the southern feature was dominant but the morphology was indistinct due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13-17, 17.2 hr from September 10-13, 18.2 hr from October 12-19, and 18.7 hr from October 31-November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10 deg relative to the comet's orbital plane (i.e., it is centered near RA = 257 deg and Dec=+67 deg with an uncertainty around this position of about 15 deg) and has two mid-latitude sources, one in each hemisphere.Comment: Accepted by The Astronomical Journal; 23 pages of text, 2 tables, 8 figure
    corecore