189 research outputs found

    Correlation between Risk Aversion and Wealth distribution

    Full text link
    Different models of capital exchange among economic agents have been proposed recently trying to explain the emergence of Pareto's wealth power law distribution. One important factor to be considered is the existence of risk aversion. In this paper we study a model where agents posses different levels of risk aversion, going from uniform to a random distribution. In all cases the risk aversion level for a given agent is constant during the simulation. While for a uniform and constant risk aversion the system self-organizes in a distribution that goes from an unfair ``one takes all'' distribution to a Gaussian one, a random risk aversion can produce distributions going from exponential to log-normal and power-law. Besides, interesting correlations between wealth and risk aversion are found.Comment: 8 pages, 7 figures, submitted to Physica A, Proceedings of the VIII LAWNP, Salvador, Brazil, 200

    Inequalities of wealth distribution in a conservative economy

    Full text link
    We analyze a conservative market model for the competition among economic agents in a close society. A minimum dynamics ensures that the poorest agent has a chance to improve its economic welfare. After a transient, the system self-organizes into a critical state where the wealth distribution have a minimum threshold, with almost no agent below this poverty line, also, very few extremely rich agents are stable in time. Above the poverty line the distribution follows an exponential behavior. The local solution exhibits a low Gini index, while the mean field solution of the model generates a wealth distribution similar to welfare states like Sweden.Comment: 7 pages, 4 figures, submitted to Physica A, Proceedings of the VIII LAWNP, Salvador, Brazil, 200

    Statistical equilibrium in simple exchange games I

    Get PDF
    Simple stochastic exchange games are based on random allocation of finite resources. These games are Markov chains that can be studied either analytically or by Monte Carlo simulations. In particular, the equilibrium distribution can be derived either by direct diagonalization of the transition matrix, or using the detailed balance equation, or by Monte Carlo estimates. In this paper, these methods are introduced and applied to the Bennati-Dragulescu-Yakovenko (BDY) game. The exact analysis shows that the statistical-mechanical analogies used in the previous literature have to be revised.Comment: 11 pages, 3 figures, submitted to EPJ

    Microeconomics of the ideal gas like market models

    Full text link
    We develop a framework based on microeconomic theory from which the ideal gas like market models can be addressed. A kinetic exchange model based on that framework is proposed and its distributional features have been studied by considering its moments. Next, we derive the moments of the CC model (Eur. Phys. J. B 17 (2000) 167) as well. Some precise solutions are obtained which conform with the solutions obtained earlier. Finally, an output market is introduced with global price determination in the model with some necessary modifications.Comment: 15pp. Revised & a reference added. An appeal in Appendix-annex (section 8; not for publication) also added. Physica A (accepted for publication

    Entropy and equilibrium state of free market models

    Full text link
    Many recent models of trade dynamics use the simple idea of wealth exchanges among economic agents in order to obtain a stable or equilibrium distribution of wealth among the agents. In particular, a plain analogy compares the wealth in a society with the energy in a physical system, and the trade between agents to the energy exchange between molecules during collisions. In physical systems, the energy exchange among molecules leads to a state of equipartition of the energy and to an equilibrium situation where the entropy is a maximum. On the other hand, in the majority of exchange models, the system converges to a very unequal condensed state, where one or a few agents concentrate all the wealth of the society while the wide majority of agents shares zero or almost zero fraction of the wealth. So, in those economic systems a minimum entropy state is attained. We propose here an analytical model where we investigate the effects of a particular class of economic exchanges that minimize the entropy. By solving the model we discuss the conditions that can drive the system to a state of minimum entropy, as well as the mechanisms to recover a kind of equipartition of wealth

    Wealth redistribution with finite resources

    Full text link
    We present a simplified model for the exploitation of finite resources by interacting agents, where each agent receives a random fraction of the available resources. An extremal dynamics ensures that the poorest agent has a chance to change its economic welfare. After a long transient, the system self-organizes into a critical state that maximizes the average performance of each participant. Our model exhibits a new kind of wealth condensation, where very few extremely rich agents are stable in time and the rest stays in the middle class.Comment: 4 pages, 3 figures, RevTeX 4 styl

    Basic kinetic wealth-exchange models: common features and open problems

    Get PDF
    We review the basic kinetic wealth-exchange models of Angle [J. Angle, Social Forces 65 (1986) 293; J. Math. Sociol. 26 (2002) 217], Bennati [E. Bennati, Rivista Internazionale di Scienze Economiche e Commerciali 35 (1988) 735], Chakraborti and Chakrabarti [A. Chakraborti, B. K. Chakrabarti, Eur. Phys. J. B 17 (2000) 167], and of Dragulescu and Yakovenko [A. Dragulescu, V. M. Yakovenko, Eur. Phys. J. B 17 (2000) 723]. Analytical fitting forms for the equilibrium wealth distributions are proposed. The influence of heterogeneity is investigated, the appearance of the fat tail in the wealth distribution and the relaxation to equilibrium are discussed. A unified reformulation of the models considered is suggested.Comment: Updated version; 9 pages, 5 figures, 2 table

    Scaling Theory for Migration-Driven Aggregate Growth

    Full text link
    We give a comprehensive rate equation description for the irreversible growth of aggregates by migration from small to large aggregates. For a homogeneous rate K(i;j) at which monomers migrate from aggregates of size i to those of size j, that is, K(ai;aj) ~ a^{lambda} K(i,j), the mean aggregate size grows with time as t^{1/(2-lambda)} for lambda<2. The aggregate size distribution exhibits distinct regimes of behavior which are controlled by the scaling properties of the migration rate from the smallest to the largest aggregates. Our theory applies to diverse phenomena, such as the distribution of city populations, late stage coarsening of non-symmetric binary systems, and models for wealth exchange.Comment: 4 pages, 2-column revtex format. Revision to appear in PRL. Various changes in response to referee comments. Figure from version 1 deleted but is available at http://physics.bu.edu/~redne
    • …
    corecore