28 research outputs found

    Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T.

    Get PDF
    PURPOSE: Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. MATERIALS AND METHODS: A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. RESULTS: The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. CONCLUSION: This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T

    Multimodal population brain imaging in the UK Biobank prospective epidemiological study

    Get PDF
    Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank

    Imagerie rapide par IRM pour le monitorage des thermothérapies

    No full text
    L’hyperthermie guidée par IRM permet l’ablation thermique des tumeurs, l’activation de l’expression d’un transgène sous contrôle d’un promoteur thermo-sensible ainsi que le dépôt local de médicaments à l’aide de nanovéhicules sensibles à la température ou à la pression locale. L’imagerie de température par IRM, basée sur la technique du décalage de la fréquence de résonance du proton permet le monitorage des interventions d’hyperthermie. Les procèdes interventionnels guides par IRM sur cible mobile requièrent des séquences d’imagerie rapides afin d’obtenir des images de phases ayant une résolution spatio-temporelle élevée. Nous avons démontré l’efficacité de l’association des méthodes adaptatives d’imagerie parallèle telles que TSENSE et TGRAPPA et de la méthode multi-référence de l’atlas de mouvement afin de compenser les variations du champ magnétique induites par les organes en mouvement. Les procédés interventionnels guides par IRM sont basés sur des séquences d’imagerie rapides capables de fournir des images en temps-réel ayant une relation précise entre la position de la cible représentée dans l’image et sa vraie position spatiale. Les séquences écho-planar sont très rapides mais possèdent des distorsions géométriques. Nous avons proposé une méthode de correction des distorsions des images EPI. Cette technique est basée sur des approches existantes utilisant l’acquisition de deux images EPI ayant deux temps d’écho différents. L’efficacité de la méthode proposée a été démontrée pour une expérience de thermométrie par IRM. La rapidité du traitement des données, associée à une faible diminution de la rapidité d’acquisition, rend cette méthode particulièrement adaptée pour les procédés interventionnels guides par IRM. La perfusion sanguine, la diffusion thermique ainsi que le coefficient d’absorption des ondes acoustiques ou électromagnétiques déterminent la distribution de la température durant les procédés interventionnels. Certaines tumeurs ont des taux de perfusion élevés conduisant à une évacuation importante de la chaleur et par conséquent, un refroidissement rapide de la cible. Cet effet réduit la température maximale atteinte pour une puissance donne et peut conduire à des zones d’ablation plus petites réduisant ainsi l’efficacité de l’intervention. La connaissance précise des paramètres thermiques du tissu peut aider à la planification des procédés interventionnels. Dans ce but, nous avons proposé une méthode permettant la détermination précise des paramètres cités précédemment.MR-guided HIFU-induced hyperthermia allows for thermal ablation of tumors, for gene therapy by thermal induction of transgenic expression (based on a thermo-sensitive promoter) and for local drug delivery using thermo-sensitive liposomes. These applications require accurate temperature measurement during the therapeutic intervention. Dynamic MR-temperature imaging based on the proton resonance frequency shift technique allows monitoring the local temperature evolution during hyperthermia. MR-guided thermotherapy on moving organs requires imaging sequences providing phase images with high temporal and spatial resolution. We demonstrated the feasibility of combining adaptive parallel imaging techniques such as TSENSE or TGRAPPA with the atlas-based multi-baseline method for compensating the magnetic field variations produced by moving organs during the respiratory cycle. Many MR-guided interventional procedures rely on real-time imaging sequences for providing precise relations between the target position in the image and the true position in the scanner. Although echo-planar imaging (EPI) sequences are very fast, they are prone to geometric distortions. For correcting these distortions, we proposed a real-time correction method by applying existing approaches based on a dual EPI acquisition with varying echo times. It is demonstrated that this method works well in combination with MR-thermometry for guiding thermal therapies. Short data-processing times as well as a small penalty in acquisition speed make this method well-adapted for MR-guided interventions. Local blood perfusion, thermal conductivity and the absorption coefficient of acoustic or electro-magnetic waves determine the temperature distribution in living tissue. Some tumors have high perfusion rates resulting in considerable heat evacuation. This effect reduces the maximal temperature increase achievable for a given deposited energy and produces smaller ablation zones, which can impair the efficiency of the therapeutic procedure. A method for accurately estimating the above mentioned tissue parameters, was presented. This method could thus be useful in quantifying the influence of perfusion during thermal interventions

    Imagerie rapide par IRM pour le monitorage des thermothérapies

    No full text
    L’hyperthermie guidée par IRM permet l’ablation thermique des tumeurs, l’activation de l’expression d’un transgène sous contrôle d’un promoteur thermo-sensible ainsi que le dépôt local de médicaments à l’aide de nanovéhicules sensibles à la température ou à la pression locale. L’imagerie de température par IRM, basée sur la technique du décalage de la fréquence de résonance du proton permet le monitorage des interventions d’hyperthermie. Les procèdes interventionnels guides par IRM sur cible mobile requièrent des séquences d’imagerie rapides afin d’obtenir des images de phases ayant une résolution spatio-temporelle élevée. Nous avons démontré l’efficacité de l’association des méthodes adaptatives d’imagerie parallèle telles que TSENSE et TGRAPPA et de la méthode multi-référence de l’atlas de mouvement afin de compenser les variations du champ magnétique induites par les organes en mouvement. Les procédés interventionnels guides par IRM sont basés sur des séquences d’imagerie rapides capables de fournir des images en temps-réel ayant une relation précise entre la position de la cible représentée dans l’image et sa vraie position spatiale. Les séquences écho-planar sont très rapides mais possèdent des distorsions géométriques. Nous avons proposé une méthode de correction des distorsions des images EPI. Cette technique est basée sur des approches existantes utilisant l’acquisition de deux images EPI ayant deux temps d’écho différents. L’efficacité de la méthode proposée a été démontrée pour une expérience de thermométrie par IRM. La rapidité du traitement des données, associée à une faible diminution de la rapidité d’acquisition, rend cette méthode particulièrement adaptée pour les procédés interventionnels guides par IRM. La perfusion sanguine, la diffusion thermique ainsi que le coefficient d’absorption des ondes acoustiques ou électromagnétiques déterminent la distribution de la température durant les procédés interventionnels. Certaines tumeurs ont des taux de perfusion élevés conduisant à une évacuation importante de la chaleur et par conséquent, un refroidissement rapide de la cible. Cet effet réduit la température maximale atteinte pour une puissance donne et peut conduire à des zones d’ablation plus petites réduisant ainsi l’efficacité de l’intervention. La connaissance précise des paramètres thermiques du tissu peut aider à la planification des procédés interventionnels. Dans ce but, nous avons proposé une méthode permettant la détermination précise des paramètres cités précédemment.MR-guided HIFU-induced hyperthermia allows for thermal ablation of tumors, for gene therapy by thermal induction of transgenic expression (based on a thermo-sensitive promoter) and for local drug delivery using thermo-sensitive liposomes. These applications require accurate temperature measurement during the therapeutic intervention. Dynamic MR-temperature imaging based on the proton resonance frequency shift technique allows monitoring the local temperature evolution during hyperthermia. MR-guided thermotherapy on moving organs requires imaging sequences providing phase images with high temporal and spatial resolution. We demonstrated the feasibility of combining adaptive parallel imaging techniques such as TSENSE or TGRAPPA with the atlas-based multi-baseline method for compensating the magnetic field variations produced by moving organs during the respiratory cycle. Many MR-guided interventional procedures rely on real-time imaging sequences for providing precise relations between the target position in the image and the true position in the scanner. Although echo-planar imaging (EPI) sequences are very fast, they are prone to geometric distortions. For correcting these distortions, we proposed a real-time correction method by applying existing approaches based on a dual EPI acquisition with varying echo times. It is demonstrated that this method works well in combination with MR-thermometry for guiding thermal therapies. Short data-processing times as well as a small penalty in acquisition speed make this method well-adapted for MR-guided interventions. Local blood perfusion, thermal conductivity and the absorption coefficient of acoustic or electro-magnetic waves determine the temperature distribution in living tissue. Some tumors have high perfusion rates resulting in considerable heat evacuation. This effect reduces the maximal temperature increase achievable for a given deposited energy and produces smaller ablation zones, which can impair the efficiency of the therapeutic procedure. A method for accurately estimating the above mentioned tissue parameters, was presented. This method could thus be useful in quantifying the influence of perfusion during thermal interventions

    Simultaneous Multislice pTx for Readout-Segmented Diffusion Imaging at 7 T

    No full text
    This abstract addresses the challenges of 7T diffusion MRI associated with shorter T2/T2* and inhomogeneous B1+ field by implementing simultaneous multislice (SMS) parallel-transmit (pTx) slice-by-slice shimming in a readout-segmented diffusion-weighted sequence, RESOLVE. The benefits of pTx were compared to conventional single-transmit circularly polarized (CP) mode both with and without SMS using a matched high-resolution diffusion protocol in the same healthy volunteer. Slice-by-slice shimming significantly improves signal homogeneity while SMS opens the door for improved scan efficiency. The simplicity of slice-by-slice shimming and sequence integration makes this a practical solution for routine 7T imaging
    corecore