6 research outputs found

    Global Distribution of Zooplankton Biomass Estimated by In Situ Imaging and Machine Learning

    Get PDF
    Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60 degrees N and 55 degrees S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 approximate to 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future

    Analyse globale de la pompe à carbone biologique à partir de données en imagerie quantitative

    No full text
    The biological carbon pump (BCP) plays a central role in the global ocean carbon cycle, transporting carbon from the surface to the deep ocean and sequestering it for long periods. This work aims to analyse two key players of the BCP: zooplankton and particles. To this end, we use in situ imaging data from the Underwater Vision Profiler (UVP5) to investigate two primary axes: 1) the global distribution of zooplankton biomass and 2) carbon export in the context of a North Atlantic spring bloom. Our objectives includes a quantification of global zooplankton biomass, enhancing our comprehension of the BCP via morphological analysis of particles, and assessing and comparing the gravitational flux of detrital particles during a the North Atlantic spring bloom using high-resolution UVP5 data. With the help of UVP5 imagery and machine learning through habitat models using boosted regression trees, we investigate the global distribution of zooplankton biomass and its ecological implications. The results show maximum zooplankton biomass values around 60°N and 55°S and minimum values within the oceanic gyres, with a global biomass dominated by crustaceans and rhizarians. By employing machine learning techniques on globally homogeneous data, this study provides taxonomical insights into the distribution of 19 large zooplankton groups (1-50 mm equivalent spherical diameter). This first protocol estimates global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. In addition, within the unique context of the EXPORTS 2021 campaign, we analyse UVP5 data obtained by deploying three instruments in a highly retentive eddy. After clustering the 1,720,914 images using Morphocluster, a semi-autonomous classification software, we delve into the characteristics of the marine particles, studying their morphology through an oblique framework that follows a plume of detrital particles between the surface and 800 m depth. The results of the plume following approach show that, contrary to expectations, aggregates become unexpectedly larger, denser, more circular and more complex with depth. In contrast, the evolution of fecal pellets is more heterogeneous and shaped by zooplankton activity. Such results challenge previous expectations and may require a reassessment of our view of sinking aggregates and fecal pellets. We also studied concentration and carbon flux dynamics using a more traditional 1D framework where we explore the three key elements in flux estimation from in situ imaging data by comparing UVP5 and sediment trap flux estimates: size range covered, sinking rate and carbon content. According to the current literature, neutrally buoyant sediment traps (NBST) and surface-tethered traps (STT) usually cover a size range from 10 µm to approximately 2 mm. In our study, we have found that by expanding the UVP size range to 10 µm and limiting it to 2 mm, a more consistent comparison can be made between UVP5-generated flux and sediment trap fluxes (obtained by colleagues). However, it is worth noting that there remains a large flux contribution above this size threshold, necessitating further investigation of its implications through the use of complementary approaches such as the use of sediment traps with larger openings. This manuscript not only advances our knowledge, but also addresses critical challenges in estimating zooplankton biomass and particle dynamics during export events. The findings of this study open up new avenues for future research on the biological carbon pump and deepen our understanding of marine ecosystems.La pompe à carbone biologique (PCB) joue un rôle central dans le cycle global du carbone océanique, en transportant le carbone de la surface vers les profondeurs et en le séquestrant pendant de longues périodes. Ce travail vise à analyser deux acteurs clés de la PCB : le zooplancton et les particules. Pour cela, nous utilisons les données d'imagerie in situ de l'Underwater Vision Profiler (UVP5) pour étudier deux axes principaux : 1) la distribution globale de la biomasse du zooplancton et 2) l'exportation de carbone dans le contexte d'une efflorescence printanière dans l'Atlantique Nord. À l'aide de l'UVP5 et de l'apprentissage automatique par le biais de modèles d'habitat utilisant des arbres de régression boostés, nous étudions la distribution mondiale de la biomasse du zooplancton et ses implications écologiques. Les résultats montrent des valeurs maximales de biomasse autour de 60°N et 55°S et des valeurs minimales au niveau des gyres océaniques, avec une biomasse globale dominée par les crustacés et les rhizaires. En utilisant des techniques d'apprentissage automatique sur des données globalement homogènes, cette étude fournit des informations sur la distribution de 19 grands groupes de zooplancton (1-50 mm de diamètre sphérique équivalent). Ce premier protocole permet d'estimer la biomasse du zooplancton et la composition de la communauté à l'échelle globale à partir d'observations d'imagerie in situ d'organismes individuels. Dans le contexte unique de la campagne EXPORTS 2021, nous analysons les données UVP5 obtenues par le déploiement de trois instruments dans un tourbillon à forte rétention. Après avoir regroupé les 1 720 914 images à l'aide de Morphocluster, un logiciel de classification semi-autonome, nous nous intéressons aux caractéristiques des particules marines, en étudiant leur morphologie à travers un cadre oblique qui suit un panache de particules entre la surface et 800 m. Les résultats montrent que, contrairement aux attentes, les agrégats deviennent de manière inattendue plus grands, plus denses, plus circulaires et plus complexes avec la profondeur. En revanche, l'évolution des pelottes fécales est plus hétérogène et façonnée par l'activité du zooplancton. Ces résultats remettent en question les attentes antérieures et appellent à une réévaluation de notre vision des agrégats et des pelottes fécales. Nous avons également étudié la dynamique des concentrations et des flux de carbone à l'aide d'un cadre 1D plus traditionnel dans lequel nous explorons les trois éléments clés de l'estimation des flux à partir d'imagerie in situ en comparant les estimations de l'UVP5 et des pièges à sédiments: la gamme de tailles couvertes, la vitesse de sédimentation et le contenu en carbone. Selon la littérature, les pièges à sédiments à flottabilité neutre (NBST) et les pièges attachés à la surface (STT) couvrent généralement une gamme de tailles allant de 10 µm à environ 2 mm. Dans notre étude, nous avons constaté qu'en élargissant la gamme de tailles de l'UVP5 à 10 µm et en la limitant à 2 mm, une comparaison plus consistante peut être faite entre le flux issu de l'UVP5 et celui des pièges à sédiments (obtenus par des collègues). Toutefois, il reste une contribution importante du flux au-dessus de ce seuil de taille qui nécessite une étude plus approfondie de ses implications par l'utilisation d'approches complémentaires telles que des pièges à sédiments avec des ouvertures plus grandes. Ce manuscrit ne fait pas seulement progresser nos connaissances, mais il aborde également des défis critiques dans l'estimation de la biomasse du zooplancton et de la dynamique des particules pendant les événements d'export. Les résultats de cette étude ouvrent de nouvelles voies pour la recherche future sur la PCB et approfondissent notre compréhension des écosystèmes marins

    Libre administration des collectivités territoriales

    No full text
    International audienceCE, 20 juin 2011, Commune de Roquebrune sur Argens, n° 348878 ; CE, 29 juin 2011, Département de Loire-Atlantique, n° 348549 ; CE, 19 juillet 2011, Commune de Chambéry, n° 331350 ; CE, 26 juillet 2011, Département de Seine-Saint-Denis et autres, n° 340041, au Lebon ; CE, 28 juillet 2011, Société « Au verger de Provence », n° 349382, AJDA 2011. 2200 ; CE, 19 septembre 2011, Département de Loire-Atlantique, n° 350726 ; CE, 10 novembre 2011, Région Ile-de-France, n° 328477 ; CE, 13 décembre 2011, Commune de Chambord, n° 353307, AJDA 2012. 509 ; CAA Versailles, 12 mai 2011, Commune de Verrières-le-Buisson c/ Ministre de l'intérieur, de l'outre-mer et des collectivités territoriales, n° 09VE03294 ; CAA Marseille, 19 mai 2011, Comité de sauvegarde du site de Clarensy Valensole, n° 09MA01597 ; CAA Lyon, 31 mai 2011, SCI du grand Rieux, n° 09LY02982 ; CAA Nantes, 27 décembre 2011, Département d'Ille-et-Vilaine, n° 11NT0248

    Global census of the significance of giant mesopelagic protists to the marine carbon and silicon cycles

    Get PDF
    International audienceThriving in both epipelagic and mesopelagic layers, Rhizaria are biomineralizing protists, mixotrophs or flux-feeders, often reaching gigantic sizes. In situ imaging showed their contribution to oceanic carbon stock, but left their contribution to element cycling unquantified. Here, we compile a global dataset of 167,551 Underwater Vision Profiler 5 Rhizaria images, and apply machine learning models to predict their organic carbon and biogenic silica biomasses in the uppermost 1000 m. We estimate that Rhizaria represent up to 1.7% of mesozooplankton carbon biomass in the top 500 m. Rhizaria biomass, dominated by Phaeodaria, is more than twice as high in the mesopelagic than in the epipelagic layer. Globally, the carbon demand of mesopelagic, flux-feeding Phaeodaria reaches 0.46 Pg C y −1 , representing 3.8 to 9.2% of gravitational carbon export. Furthermore, we show that Rhizaria are a unique source of biogenic silica production in the mesopelagic layer, where no other silicifiers are present. Our global census further highlights the importance of Rhizaria for ocean biogeochemistry

    Resolving the scales of plankton ecology and biogeochemical fluxes with the Underwater Vision Profiler

    Full text link
    The Underwater Vision Profiler (UVP) has been developed to study the number, size and shape of particles (size > 80µm) and plankton (size > 700µm) in situ. Over the last decade, thousands of profiles have been collected in the world's oceans by the UVP5 to better understand and quantify processes affecting community compositions of large plankton and the biological carbon pump. These data, used together with modeling approaches helped estimate plankton global carbon biomass and particle vertical flux. The most recent UVP (UVP6) sensors have been developed to be mounted on autonomous platforms, mooring and CTD rosettes down to 6000 m depth. Fully inter-calibrated, they record particles and identify plankton and marine snow after recovery or during deployment using an embedded recognition algorithm. A complete software ecosystem is used to pilot the instrument, record the data, and make them available to fulfill the global need of easy data access expressed by scientists, policy makers and the public. Because of the cost reduction of the UVP6, its capability to be mounted on many platforms including autonomous ones, the Ocean is being quickly populated by this sensor (125 sensors have been in operation in the last 2 years). Recent plankton community composition, particle mass, and flux data from three different basins in the Atlantic will be presented. In the next decade, the massive global monitoring of these key biological Essential Oceanographic Variables will significantly advance our understanding of key aquatic processes including the biological carbon pump

    Resolving the scales of plankton ecology and biogeochemical fluxes with the Underwater Vision Profiler

    No full text
    International audienceThe Underwater Vision Profiler (UVP) has been developed to study the number, size and shape of particles (size \textgreater 80µm) and plankton (size \textgreater 700µm) in situ. Over the last decade, thousands of profiles have been collected in the world's oceans by the UVP5 to better understand and quantify processes affecting community compositions of large plankton and the biological carbon pump. These data, used together with modeling approaches helped estimate plankton global carbon biomass and particle vertical flux. The most recent UVP (UVP6) sensors have been developed to be mounted on autonomous platforms, mooring and CTD rosettes down to 6000 m depth. Fully inter-calibrated, they record particles and identify plankton and marine snow after recovery or during deployment using an embedded recognition algorithm. A complete software ecosystem is used to pilot the instrument, record the data, and make them available to fulfill the global need of easy data access expressed by scientists, policy makers and the public. Because of the cost reduction of the UVP6, its capability to be mounted on many platforms including autonomous ones, the Ocean is being quickly populated by this sensor (125 sensors have been in operation in the last 2 years). Recent plankton community composition, particle mass, and flux data from three different basins in the Atlantic will be presented. In the next decade, the massive global monitoring of these key biological Essential Oceanographic Variables will significantly advance our understanding of key aquatic processes including the biological carbon pump
    corecore