21 research outputs found
DJELOVANJE EKSPLOZIJA NA KONSTRUKCIJE
The paper describes the process of determining the blast load on structures and provides a numerical example of a fictive structure exposed to this load.
The aim was to become familiar with the issue of blast load because of ever growing terrorist threat and the lack of guidelines from national and European
regulations on the verification of structures exposed to explosions. The blast load was analytically determined as a pressure-time history and numerical
model of the structure was created in SAP2000. The results confirm the initial assumption that it is possible with conventional software to simulate an
explosion effects and give a preliminary assessment of the structure.Dana je analiza optereÄenja eksplozijom na konstrukciju te numeriÄki primjer djelovanja na fiktivnu graÄevinu. Cilj je bio upoznati se s fenomenom
eksplozije kao optereÄenja na konstrukcije uslijed sve veÄe teroristiÄke prijetnje te nedostatka smjernica u nacionalnim i europskim propisima o provjeri
konstrukcija izloženih djelovanju eksplozija. AnalitiÄki je odreÄeno optereÄenje eksplozijom kao vremenski zapis promjene tlaka zraka te numeriÄki
modeliranja konstrukcija i prethodno odreÄeno optereÄenje u programskom paketu SAP2000. Dobiveni rezultati potvrÄuju poÄetnu pretpostavku kako je
moguÄe konvencionalnim softverom simulirati djelovanje eksplozije i dati preliminarnu ocjenu stanja konstrukcije
NUMMERISCHE SIMULATION DER EINWIRKUNG EINER EXPLOSION AUF ĆBERFĆHRUNGEN
Nadvožnjak nije moguÄe uÄiniti, projektiranjem i/ili izvedbom, apsolutno sigurnim
na djelovanje eksplozije jer se ni sama koliÄina eksploziva koja bi se detonirala ispod
mosta u nekakvom napadu ne može odrediti s prihvatljivom vjerojatnoÅ”Äu. U radu je
analizirano djelovanje tri koliÄine eksploziva detonirane ispod rasponske konstrukcije
nadvožnjaka. Promatrano je djelujuÄe optereÄenje, ponaÅ”anje i oÅ”teÄenje rasponskog
sklopa nadvožnjaka. ZakljuÄeno je kako sve tri koliÄine eksploziva znatno oÅ”teÄuju
uobiÄajeni nadvožnjak te uzrokuju ruÅ”enje. Nelinearna numeriÄka analiza nadvožnjaka
provedena je koristeÄi hidrokod softver Ansys Autodyn.Overpasses can not be made absolutely safe to explosive action, regardless of
interventions made during their design and/or realisation. This is due to the fact that
the very quantity of explosive to be activated under the bridge during an attack can
not be defined with an acceptable level of probability. Three quantities of explosives
activated under the overpass structure are analysed. The load, behaviour, and
damage to overpass superstructure are considered. It is stated in conclusion that
all three quantities of explosive afflict considerable damage to usual overpasses,
and cause their collapse. The nonlinear numerical analysis of the overpass was
conducted using the Ansys Autodyn hydrocode software.In Ćbereinstimmung damit wurde die Wirkung von drei Sprengstoffmengen
analysiert, die unter der Konstruktion der ĆberfĆ¼hrung detonierten. Beobachtet
wurden die einwirkende Belastung, das Verhalten und die BeschƤdigung am
Ćberbau der ĆberfĆ¼hrung. Es wurde festgestellt, dass alle drei Sprengstoffmengen
eine normale ĆberfĆ¼hrung erheblich beschƤdigen sowie den Einsturz verursachen.
Die nicht lineare nummerische Analyse der ĆberfĆ¼hrung wurde durch Anwendung
der hidrokod Software Ansys Autodyn durchgefĆ¼hrt
DJELOVANJE EKSPLOZIJA NA NADVOŽNJAKE
TeroristiÄke aktivnosti postaju sve veÄi problem svih zemalja svijeta posebno onih koje su
Älanice NATO-a, iako Hrvatska do sada nije bila izložena teroristiÄkim napadima, svojim
vojnim angažmanom u mirovnim misijama lako može postati jedna od meta. S obzirom na to
da je osnovno oružje prilikom takvih napada eksploziv, realnost situacije dodatno je naglaŔena
s dostupnosti informacija o izradi eksplozivnih naprava, relativnoj lakoÄi njihove izrade te
njihovoj kompaktnosti i prenosivosti.
Jedna od moguÄih meta spomenutih napada su mostovi, koji su važne infrastrukturne
graÄevine i Äije uniÅ”tenje može imati za posljedicu odsijecanje važnih strateÅ”kih toÄaka i visok
broj ljudskih žrtava. Takva moguÄnost prisiljava inženjere da prilikom projektiranja pokuÅ”aju
uzeti u obzir opasnost izlaganja mosta snažnom optereÄenju uzrokovanom eksplozijom, no za
takvo Å”to je prvo nužno podrobnije prouÄiti uÄinke eksplozija na mostnu konstrukciju.
BuduÄi da su eksperimentalna istraživanja djelovanja eksplozija na konstrukcije složena i
skupa, ali i vrlo opasna, prouÄavanje problema djelovanja eksplozija na mostove u Å”irem
razmjeru omoguÄeno je tek s razvojem numeriÄkih programskih paketa koji mogu s
odreÄenom pouzdanoÅ”Äu simulirati djelovanje eksplozije na složene konstrukcijske tvorevine
s takoÄer složenim ponaÅ”anjem i meÄudjelovanjima unutar elemenata. Osim toga, tek s
raÄunalima koja mogu obraditi velike koliÄine podataka pri takvim simulacijama omoguÄeno
je u racionalnom vremenu osigurati dostatno prihvatljive rezultate.
UzimajuÄi u obzir da djelovanje eksplozija na mostove nije dostatno prouÄeno, te moguÄnosti
i nedostatke numeriÄkih analiza djelovanja eksplozija, za cilj disertacije uzeto je: prouÄavanje
utjecaja parametara eksplozije na numeriÄke rezultate; obrada, kalibracija i prijedlozi za
odabir kontaktnih elemenata za modeliranje mosta; prouÄavanje i odabir modela ponaÅ”anja
materijala ā zrak, beton, Äelik, elastomerni ležaj ā na rezultate; optimizacija veliÄine
konaÄnog elementa zraka i materijala mosta te vremenskog koraka pri prouÄavanju djelovanja
eksplozije; prouÄavanje djelovanja valne fronte na konstrukciju razliÄitih oblika popreÄnog
presjeka mosta i rjeŔenja upornjaka.
Naglasak disertacije stavljen je na prouÄavanje djelovanja tri razliÄite koliÄine eksploziva
ispod nenadziranog mosta s pretpostavkom kako nagib nasipa te oblik rasponskog sklopa bitno utjeÄu na ponaÅ”anje mosta. Analizirani su ploÄasti popreÄni presjeci nadvožnjaka s dva
razliÄita oblika pogleda: ravni i zaobljeni. Uz oblik popreÄnog presjeka rasponskog sklopa,
varirana je i vrsta upornjaka: masivni upornjak s vertikalnim zidom (Tip 1) te olakŔani
upornjak s propuŔtenim nasipom, nagiba 1:1,5 (Tip 2). Pri tome je usvojeno da su nadvožnjaci
izvedeni od armiranog betona kojemu je u simulaciji omoguÄeno raspucavanje i drobljenje,
interakcija izmeÄu armature i betona te promjena karakteristika u ovisnosti o brzini nanoÅ”enja
optereÄenja. Dakle, koriÅ”teni su zakoni ponaÅ”anja materijala koji omoguÄavaju nelinearno
modeliranje ovisno o brzini deformacije i lokalnom oÅ”teÄenju (jednadžbe stanja).
Uporabom odabranih materijalnih karakteristika za elemente nadvožnjaka simulirani su
nastanak i Å”irenje oÅ”teÄenja kroz ukupno trajanje djelovanja eksplozije Å”to je omoguÄilo
procjenu stanja nadvožnjaka nakon prestanka djelovanja valne fronte. Osim toga, simulacije
su omoguÄile zakljuÄak da veliÄina konaÄnog elementa zraka znatno utjeÄe na veliÄinu tlaka
vala eksplozije na konstrukciju, te da oblik oslonca (vertikalni zid upornjaka ili propuŔteni
kosi nasip) nemaju kritiÄni utjecaj na veliÄinu tlaka uzrokovanog detonacijom eksplozivne
naprave, buduÄi da se veÄina oÅ”teÄenja razvije u poÄetnim trenutcima djelovanja eksplozije, a
ne nakon refleksije od susjednih elemenata.
Daljnji rad treba usmjeriti prema eksperimentalnim istraživanjima kojima bi se utvrdile
stvarne vrijednosti tlakova na konstrukciju te prema njima kalibrirali postojeÄi numeriÄki
modeli. Kalibracija se prvenstveno odnosi na veliÄinu mreže konaÄnog elementa samih
betonskih komponenti te okolnog zraka kroz koji prolazi valna fronta eksplozije.Terrorist attacks are becoming ever more present problem for all world countries, especially
for those who are NATO members and although Croatia was so far exempt from terrorist
attacks, whit its involvement in peace missions around the world could easily become one of
the targets. Because the main weapon in terrorist arsenal are explosive devices, reality of the
situation is additionally emphasis with the fact that nowadays it is very easy to acquire all
necessary information about device manufacturing, production is relatively easy and devices
can be very compact and portable.
Bridges are one of the potential targets because they are important structures in road
transportation and their destruction can cause traffic interruption between key points and
isolation of certain strategic locations. That possibility enforces engineers to take into account
threat of explosive device detonation in their design, but primarily is necessary to conduct an
in-depth study of explosive effects on bridge elements.
Because experimental investigations of blast loads are complex, expensive and also
dangerous, it was possible to analyse the problem on larger scale only after a development of
numerical softwares which were able to simulate blast loading on complex structures whit
sufficient accuracy. Apart from that, only with the development of computers with high-speed
processing capabilities it was possible to obtain acceptable results of blast load simulations in
rational time.
Taking into account that the influence of the blast loading hasnāt been so far sufficiently
investigated and possibilities and shortfalls of numerical analysis, the goal of this dissertation
was to investigate the following: influence of blast parameters on numerical results;
processing, calibration and proposal for adequate contact elements for bridge modelling;
investigation and selection of material models for air, concrete, steel and elastomer;
determination of optimal mesh size for air and bridge elements and adequate time step;
investigation of blast load influence on bridge behaviour for different types of bridge
superstructures and abutments.
Dissertation emphasized the investigation of bridge behaviour for detonation of three different
explosive quantities under the unmonitored bridge with assumption that the embankment slope and superstructure shape influence overall bridge behaviour. In accordance with
aforementioned assumptions two types of bridge superstructure and abutments were analysed:
flat (superstructure type 1) and rounded lower face slab cross section (superstructure type 2),
and vertical wall abutment without an embankment (embankment type 1) and with an inclined
embankment of slope ratio 1:1.5 (embankment type 2). Material used for overpass modelling
was reinforced concrete in which cracking, crushing, interaction between concrete and
reinforcement was enabled. That means that suitable constitutive equations were used, which
enabled modelling of nonlinear concrete behaviour in relation to strain rates and local damage
(equations of state).
Using adequate material characteristics for overpass elements it was possible to simulate
occurrence and spread of damage throughout all time instances during blast loading. This
consequently enabled assessment of overpass condition after the simulation. Additionally,
simulations showed that blast pressures are significantly affected by air mesh size and that the
type of the support (vertical abutment wall or inclined embankment) doesn't have any
influence on the blast pressure magnitude because the bulk of damage occurs in initial stages
of simulation and is not affected by blast load reflections of adjacent elements.
Further research should be directed toward experimental investigation in order to obtain
actual pressure values and accordingly calibrate existing numerical models, which primarily
relates to the calibration of the finite element mesh size of concrete components and
surrounding air through which blast wave front is transmitted
Utjecaj vertikalne komponente potresa na AB nosaÄe velikog raspona
Most of the previous studies in the field of earthquake engineering have neglected the effects of vertical ground motion and are usually guided by horizontal motion. The EN1998 proposes action analysis of the vertical acceleration for certain types of elements and their length and their distance from the active fault. In this paper simply supported beams with various spans, 10, 15 and 20 m, are calculated for the action of real earthquakes with different intensities. Two typical cross sections were chosen: "T" cross section and rectangular cross section. The linear and nonlinear material models were used, and all the models were calculated using rigid and elastic supports. Through the combinations of these different spans, cross sections, material models and types of the supports, the influence and importance of the vertical component of the ground motion is estimated. Based on the results obtained it was concluded that there is a need for the application of vertical acceleration in the seismic analysis of these elements.DosadaÅ”nja su ispitivanja uÄinaka potresa zanemarivala vertikalno gibanje tla te se uglavnom usmjeravala prema horizontalnoj komponenti. EN1998 daje preporuku analize djelovanja vertikalnog ubrzanja za odreÄene vrste elemenata i njihovih duljina te njihove udaljenosti od aktivnog rasjeda. U radu se analiziraju jednostavno oslonjeni nosaÄi razliÄitih raspona, 10, 15, 20 m te pravokutnog i "T" popreÄnog presjeka. Primijenjena su dva tipa oslanjanja, kruti i elastiÄni ležaj te dva tipa modela materijala, linearni i nelinearni. NosaÄi su podvrgnuti djelovanju Äetiri realna potresa razliÄitog intenziteta. Na ovaj se naÄin pratila promjena u momentima savijanja nosaÄa u polovici raspona kako bi se vidio doprinos vertikalnog ubrzanja. Na temelju dobivenih rezultata zakljuÄeno je kako za analizirane nosaÄe ipak postoji potreba primjene vertikalne akceleracije prilikom seizmiÄke analize
REAL-TIME BRIDGE MONITORING
Mostovi su važne infrastrukturne graÄevine i zbog toga ih je potrebno održavati. Održavanje obuhvaÄa
preglede i popravak uoÄenih oÅ”teÄenja. U radu je dan pregled nekih od metoda za kontinuirano motrenje i primjeri
njihove primjene na izgraÄenim mostovima. Metode koriste: GPS (Global Positioning System; satelitski Sustav
globalnog pozicioniranja), akcelerometre, optiÄka vlakna, anemometre, tenzometre. Iako je postavljanje opreme
za kontinuirano motrenje mostova isprva skuplje od uobiÄajenih metoda, ono omoguÄuje uvid u stanje mosta u
bilo kojem trenutku te pravodobno reagiranje.Bridges are important infrastructural objects and they must be maintained. Maintenance includes
inspection and repair of identified damages. Paper gives a review of several methods for real-time monitoring.
Methods use: GPS (Global Positioning System), accelerometars, optical fibers, anemometers, strain gages.
Although the installation of equipment for real-time monitoring is initially more expensive then for conventional
methods it enables an insight into a condition of the bridge in any given time and reaction in timely manner
UDAR MOTORNOG VOZILA U STUP MOSTA
As speed limits and traffic on city roads continue to increase, collisions between road vehicles and bridge columns are becoming more common. Current regulations analyze collision with one major simplification: replacing dynamic action with the equivalent static force. In the present paper, we develop a numerical model of a typical Croatian overpass and loaded it with an equivalent static load according to the EN1991-7 and ASSHTO LRFD provisions, analyzing the differences in overpass behavior between them. We compared this to a simplified dynamic analysis, which assumed the impact forces to be impulse loads. Protection measures can be installed around bridge columns that reduce the probability of vehicle collision and open possibilities for reducing collision forces.Udar vozila u stup mosta viÅ”e nije rijetkost, ponajviÅ”e zbog sve veÄe optereÄenosti prometnica i poveÄanja dopuÅ”tenih brzina vozila. Problem udara obraÄen je u propisima uz znatno pojednostavljenje, dinamiÄko djelovanje zamijenjeno je ekvivalentnim djelovanjem statiÄke sile. IzraÄen je numeriÄki model tipiÄnog mosta na hrvatskim cestama na koji je primijenjena sila udara prema EN1991-7 i ASSHTO LRFD propisima kako bi se pokazala razlika izmeÄu preporuÄenih djelovanja. Izvedena je dodatna usporedba s pojednostavljenim dinamiÄkim proraÄunom, gdje je sila udara pretpostavljena kao impulsno optereÄenje. Oko stupova mostova mogu biti postavljene zaÅ”titne mjere koje umanjuju vjerojatnost pojave udara i omoguÄavaju smanjenje veliÄina sila koriÅ”tenih u proraÄunu
Usporedba perioda vibracija AB okvirnih konstrukcija s empirijskim izrazima danim u Euronormi 8
For the earthquake design of RC structures, period of vibration is not known immediately, and because of that the simplified expressions are given in the construction rules, which usually link the base period with the height of the construction. The aim of this paper is to verify these empirical expressions, which are given by different authors and Eurocode 8 and to conclude whether the expressions are good enough as a starting assumption for the design of earthquake resistant buildings. Most attention will be devoted to the RC frame structures. When modeling, besides the general requirements on the structures, typical requirements for particular types of structural systems will be applied. Results of the models and empirical expressions will be compared and the conclusion about applicability of the expressions will be drawn.Za potresno projektiranje armiranobetonskih okvirnih konstrukcija period vibracija se ne zna odmah i zbog toga se koriste pojednostavnjene jednadžbe u graÄevinskim pravilnicima koje najÄeÅ”Äe povezuju osnovni period s visinom konstrukcije. Cilj ovoga rada je provjeriti da li su empirijski izrazi dani razliÄitim autorima i Euronormom 8 dovoljno dobri kao poÄetna pretpostavka prilikom potresnoga projektiranja. NajveÄa pozornost Äe se posvetiti armiranobetonskim okvirnim konstrukcijama. Prilikom modeliranja osim opÄih zahtjeva na konstrukciju, primijeniti Äe se posebni zahtjevi za odgovarajuÄi tip konstrukcijske. Rezultati modela i empirijskih izraza Äe se usporediti i izvuÄi Äe se zakljuÄak o primjeni izraza
Blast loading on structures
Dana je analiza optereÄenja eksplozijom na konstrukciju te numeriÄki primjer djelovanja na fiktivnu graÄevinu. Cilj je bio upoznati se s fenomenom eksplozije kao optereÄenja na konstrukcije uslijed sve veÄe teroristiÄke prijetnje te nedostatka smjernica u nacionalnim i europskim propisima o provjeri konstrukcija izloženih djelovanju eksplozija. AnalitiÄki je odreÄeno optereÄenje eksplozijom kao vremenski zapis promjene tlaka zraka te numeriÄki modeliranja konstrukcija i prethodno odreÄeno optereÄenje u programskom paketu SAP2000. Dobiveni rezultati potvrÄuju poÄetnu pretpostavku kako je moguÄe konvencionalnim softverom simulirati djelovanje eksplozije i dati preliminarnu ocjenu stanja konstrukcije.The paper describes the process of determining the blast load on structures and provides a numerical example of a fictive structure exposed to this load. The aim was to become familiar with the issue of blast load because of ever growing terrorist threat and the lack of guidelines from national and European regulations on the verification of structures exposed to explosions. The blast load was analytically determined as a pressure-time history and numerical model of the structure was created in SAP2000. The results confirm the initial assumption that it is possible with conventional software to simulate an explosion effects and give a preliminary assessment of the structure
PRELIMINARY DESIGN OF CABLE-STAYED FOOTBRIDGE
Rad prikazuje idejno rjeÅ”enje pjeÅ”aÄkog mosta preko rijeke Drave u Osijeku. Å irina vodene prepreke
koju je potrebno premostiti iznosi 195,0 m. Odabrano rjeŔenje je ovjeŔeni armiranobetonski most s jednim
ekscentriÄnim kosim pilonom. GrafiÄki prikaz mosta je izraÄen u programskom paketu AutoCad, a numeriÄki
model mosta u programskom paketu SAP2000 v14.2. Na osnovi odabranih izmjera pojedinih dijelova
konstrukcije, analize promjenjivog optereÄenja prema EN1991-2 te odgovarajuÄih kombinacija optereÄenja
(EN1990), izvrÅ”ena je modalna analiza i proraÄun odgovarajuÄih reznih sila mosta.This paper presents a preliminary design of a footbridge over the River Drava in Osijek. Width of the
water obstacle is 195,0 m. The selected solution is cable-stayed reinforced concrete bridge with an eccentric
inclined pylon. Graphical drawings of the bridge were made in AutoCad software package and numerical model in
the SAP2000 v14.2 software package. Modal analysis and calculation of the section forces was performed on the
basis of selected dimensions of certain parts of the bridge structure, the analysis of variable loads according to
EN1991-2 and the appropriate combination of loads according to EN1990
OPTIMUM AXIS FORM OF THE ARCH BRIDGE
Predstavljen je proraÄun najpovoljnijeg oblika osi luka mosta, koristeÄi uvjet da moment savijanja od
stalnog optereÄenja iÅ”Äezava u svim presjecima. Za danu geometriju prepreke proraÄunani su oblici luka za
razliÄite visine strjelice luka. Nakon toga odreÄene su rezne sile i reakcije u potporama pomoÄu kojih je odreÄena
najpovoljnija strjelica luka i pripadni oblik. Rezne sile su proraÄunane na Å”tapnom modelu luka koristeÄi
programski paket SAP2000. OptereÄenje koje je uzeto u obzir je vlastita težina rasponske konstrukcije koja je
pretpostavljena kao rebrasti presjek s pripadnom opremom mosta (ograda, vijenac, pjeÅ”aÄki hodnik, rubnjak,
slojevi kolnika), težina nadluÄnih stupova i luka Äiji je oblik pretpostavljen kao Å”uplji pravokutni presjek. Prometno
optereÄenje i ostala optereÄenja ne ulaze u poÄetni proraÄun, veÄ se koriste u daljnjem proraÄunu luka na temelju
Äega se vrÅ”e dodatne ispravke oblika.Calculation of the optimum axis shape of the arch bridge is presented using a condition which implies
that the bending moment due to dead load is equal to zero in every all arch sections. For a given geometry of the
obstacle different types of arch shapes for different arch elevations were calculated. After that, internal forces in
the arch and supports forces were calculated by which optimum shape of the arch is determined. Forces were
determined on the beam model of the arch using software package SAP2000. The load taken into account was a
self-weight of the superstructure that is assumed as a ribbed cross-section with adequate bridge equipment
(guard rail, facia, footway, curb, and roadway) and self-weight of arch and arch columns which are assumed to be
of a hollow rectangular cross-section. Traffic and other loads didnāt taken into account in preliminary calculations
but they are used in further design and based on them axis form is corrected