40 research outputs found

    Reduced Expression of Sprouty1 Contributes to the Aberrant Proliferation and Impaired Apoptosis of Acute Myeloid Leukemia Cells

    Get PDF
    In most of the acute myeloid leukemia patients there is an aberrant tyrosine kinase activity. The prototype of Sprouty proteins was originally identified in Drosophila melanogaster as antagonists of Breathless, the mammalian ortholog of fibroblast growth factor receptor. Usually, SPRY family members are inhibitors of RAS signaling induced by tyrosine kinases receptors and they are implicated in negative feedback processes regulating several intracellular pathways. The present study aims to investigate the role of a member of the Sprouty family, Sprouty1, as a regulator of cell proliferation and growth in patients affected by acute myeloid leukemia. Sprouty1 mRNA and protein were both significantly down-regulated in acute myeloid leukemia cells compared to the normal counterpart, but they were restored when remission is achieved after chemotherapy. Ectopic expression of Sprouty1 revealed that it plays a key role in the proliferation and apoptotic defect that represent a landmark of the leukemic cells. Our study identified Sprouty1 as negative regulator involved in the aberrant signals of adult acute myeloid leukemia. Furthermore, we found a correlation between Sprouty1 and FoxO3a delocalization in acute myeloid leukemia (AML) patients at diagnosis, suggesting a multistep regulation of RAS signaling in human cancers

    Treatment-Free Remission in Chronic Myeloid Leukemia Harboring Atypical BCR-ABL1 Transcripts

    Get PDF
    Discontinuation of tyrosine kinase inhibitors (TKI) is the main goal today in the field of Philadelphia positive chronic myeloid leukemia (Ph + CML) and the criteria to attempt the interruption of therapy are well defined and rely on the possibility to regularly monitor the BCR-ABL1 transcript. Patients harboring atypical transcripts are automatically excluded from protocols due to the absence of a standardized method of quantification of their minimal residual disease (MRD). We report here the outcome of 6 patients with atypical transcripts with a long follow up whose MRD was followed in three cases with digital PCR during their treatment free remission (TFR)

    Human Lung Tissue Transcriptome:Influence of Sex and Age

    Get PDF
    Background Sex and age strongly influence the pathophysiology of human lungs, but scarce information is available about their effects on pulmonary gene expression. Methods We followed a discovery-validation strategy to identify sex-and age-related transcriptional differences in lung. Results We identified transcriptional profiles significantly associated with sex (215 genes; FDR <0.05) and age at surgery (217 genes) in non-involved lung tissue resected from 284 lung adenocarcinoma patients. When these profiles were tested in three independent series of non-tumor lung tissue from an additional 1,111 patients, we validated the association with sex and age for 25 and 22 genes, respectively. Among the 17 sex-biased genes mapping on chromosome X, 16 have been reported to escape X-chromosome inactivation in other tissues or cells, suggesting that this mechanism influences lung transcription too. Our 22 age-related genes partially overlap with genes modulated by age in other tissues, suggesting that the aging process has similar consequences on gene expression in different organs. Finally, seven genes whose expression was modulated by sex in non-tumor lung tissue, but no age-related gene, were also validated using publicly available data from 990 lung adenocarcinoma samples, suggesting that the physiological regulatory mechanisms are only partially active in neoplastic tissue. Conclusions Gene expression in non-tumor lung tissue is modulated by both sex and age. These findings represent a validated starting point for research on the molecular mechanisms underlying the observed differences in the course of lung diseases among men and women of different ages

    Digital PCR in Myeloid Malignancies: Ready to Replace Quantitative PCR?

    Get PDF
    New techniques are on the horizon for the detection of small leukemic clones in both, acute leukemias and myeloproliferative disorders. A promising approach is based on digital polymerase chain reaction (PCR). Digital PCR (dPCR) is a breakthrough technology designed to provide absolute nucleic acid quantification. It is particularly useful to detect a low amount of target and therefore it represents an alternative method for detecting measurable residual disease (MRD). The main advantages are the high precision, the very reliable quantification, the absolute quantification without the need for a standard curve, and the excellent reproducibility. Nowadays the main disadvantages of this strategy are the costs that are still higher than standard qPCR, the lack of standardized methods, and the limited number of laboratories that are equipped with instruments for dPCR. Several studies describing the possibility and advantages of using digital PCR for the detection of specific leukemic transcripts or mutations have already been published. In this review we summarize the available data on the use of dPCR in acute myeloid leukemia and myeloproliferative disorders
    corecore