20 research outputs found
Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 (2009): 375-384, doi:10.1007/s00359-009-0415-x.Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1125-1250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272-05-0395)
The SHED-IT community trial study protocol: a randomised controlled trial of weight loss programs for overweight and obese men
<p>Abstract</p> <p>Background</p> <p>Obesity is a major cause of preventable death in Australia with prevalence increasing at an alarming rate. Of particular concern is that approximately 68% of men are overweight/obese, yet are notoriously difficult to engage in weight loss programs, despite being more susceptible than women to adverse weight-related outcomes. There is a need to develop and evaluate obesity treatment programs that target and appeal to men. The primary aim of this study is to evaluate the efficacy of two relatively low intensity weight loss programs developed specifically for men.</p> <p>Methods and Design</p> <p>The study design is an assessor blinded, parallel-group randomised controlled trial that recruited 159 overweight and obese men in Newcastle, Australia. Inclusion criteria included: BMI 25-40 (kg/m<sup>2</sup>); no participation in other weight loss programs during the study; pass a health-screening questionnaire and pre-exercise risk assessment; available for assessment sessions; access to a computer with e-mail and Internet facilities; and own a mobile phone. Men were recruited to the SHED-IT (Self-Help, Exercise and Diet using Internet Technology) study via the media and emails sent to male dominated workplaces. Men were stratified by BMI category (overweight, obese class I, obese class II) and randomised to one of three groups: (1) SHED-IT <it>Resources </it>- provision of materials (DVD, handbooks, pedometer, tape measure) with embedded behaviour change strategies to support weight loss; (2) SHED-IT <it>Online </it>- same materials as SHED-IT <it>Resources </it>plus access to and instruction on how to use the study website; (3) Wait-list Control. The intervention programs are three months long with outcome measures taken by assessors blinded to group allocation at baseline, and 3- and 6-months post baseline. Outcome measures include: weight (primary outcome), % body fat, waist circumference, blood pressure, resting heart rate, objectively measured physical activity, self-reported dietary intake, sedentary behaviour, physical activity and dietary cognitions, sleepiness, quality of life, and perceived sexual health. Generalised linear mixed models will be used to assess all outcomes for the impact of group (<it>Resources</it>, <it>Online</it>, and <it>Control</it>), time (treated as categorical with levels baseline, 3-months and 6-months) and the group-by-time interaction. These three terms will form the base model. 'Intention-to-treat' analysis will include all randomised participants.</p> <p>Discussion</p> <p>Our study will compare evidence-based and theoretically driven, low cost and easily disseminated strategies specifically targeting weight loss in men. The SHED-IT community trial will provide evidence to inform development and dissemination of sustainable strategies to reduce obesity in men.</p> <p>Trial Registration</p> <p>Australian New Zealand Clinical Trials Registry (ACTRN12610000699066)</p
Without Apology: Writings on Abortion in Canada
Until the late 1960s, the authorities on abortion were for the most part men—politicians, clergy, lawyers, physicians, all of whom had an interest in regulating women’s bodies. Even today, when we hear women speak publicly about abortion, the voices are usually those of the leaders of women’s and abortion rights organizations, women who hold political office, and, on occasion, female physicians. We also hear quite frequently from spokeswomen for anti-abortion groups. Rarely, however, do we hear the voices of ordinary women—women whose lives have been in some way touched by abortion. Their thoughts typically owe more to human circumstance than to ideology, and without them, we run the risk of thinking and talking about the issue of abortion only in the abstract.
Without Apology seeks to address this issue by gathering the voices of activists, feminists, and scholars as well as abortion providers and clinic support staff alongside the stories of women whose experience with abortion is more personal. With the particular aim of moving beyond the polarizing rhetoric that has characterized the issue of abortion and reproductive justice for so long, Without Apology is an engrossing and arresting account that will promote both reflection and discussion.Canada Council for the Arts
Government of Canada Canada Book Fund (CFB)
Government of Alberta, Alberta Media Fun
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Chapter 2 - Pulmonary pathophysiology of neuromuscular disease
Patients with neuromuscular weakness have a high risk of developing significant respiratory morbidity throughout life. Respiratory failure is recognized as the main cause of mortality in these conditions. Nevertheless, the prevalence, severity, and progression of respiratory impairment may vary significantly across specific neuromuscular conditions. This is due to the combination of skeletal muscle weakness, disease-specific respiratory muscle involvement, and the variable severity of comorbidities affecting respiratory function such as kyphoscoliosis, axial/truncal weakness, and bulbar involvement