16 research outputs found

    Virtual and Real World in Mobile Reality

    Get PDF
    Technology in education has impacted many ways in student's life to learn enthusiastically by giving better and more than expected results. Some research stated that technology will create a passive process if it doesn't promote critical thinking. To support the statement Augmented Reality (AR) has shown the best potential to make learning more interactive and easy. It's because of the feature of AR that lets us interact with things in virtual and real-time. Therefore this paper represents the idea of using AR in education

    Education with Augmented Reality

    Get PDF
    Technology in education has impacted many ways in student's life to learn enthusiastically by giving better and more than expected results. Some research stated that technology will create a passive process if it doesn't promote critical thinking. To support the statement Augmented Reality (AR) has shown the best potential to make learning more interactive and easy. It's because of the feature of AR that lets us interact with things in virtual and real-time. Therefore this paper represents the idea of using AR in education

    Big Data Analysis on COVID-19

    Get PDF
    Over the past 2 years, the Coronavirus has rapidly spread to all parts of the world. Scientist and researchers are continuing their research to find a permanent cure. As the number of cases are increasing, so the tests are for Coronavirus is increasing rapidly, it is impossible to maintain data of test due to the time and cost factors. Big data is very helpful to maintain the track record of the COVID-19 infected patients in a very systematic way and will reduce the time delay for the results of the medical tests and modulate doctors to give proper medical treatment to the infected person. Big data analytics play an important role in building knowledge, studies required in making decisions and precautionary measures. However, due to the vast amount of data available on COVID-19 from various sources, there is a need to review the roles of big data analysis in controlling and tracking the spread of COVID-19, presenting the main challenges and directions of COVID-19 data analysis, as well as providing a framework on the related existing applications and studies to facilitate future research on COVID-19 analysis. Keywords-big data analytics, 2019 novel coronavirus disease (COVID-19)

    Review on Big Data Analysis on COVID-19

    Get PDF
    Big data analytics is in transforming stage and it will continue to grow and contribute in different area like health. In recent past we have been gone through biggest health issue of the century and it taught us a lesson that in this modern world, technology with relevant data can help to us reduce any human challenge. COVID 19 is that health issue which we faced and suffered a lot. Big data provided us a platform which help us to create an accurate and most trusted data base to analyze, track and tackle this situation. Big data provides an elaborate set of attributes, details of infected patient in very explanatory

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Non-target Effects of Botanicals on Beneficial Arthropods with Special Reference to Azadirachta indica

    No full text

    Nanoparticles for pest control: current status and future perspectives

    No full text

    Apolipoprotein B, Residual Cardiovascular Risk After Acute Coronary Syndrome, and Effects of Alirocumab.

    No full text
    Background: Apolipoprotein B (apoB) provides an integrated measure of atherogenic risk. Whether apoB levels and apoB lowering hold incremental predictive information on residual risk after acute coronary syndrome beyond that provided by low-density lipoprotein cholesterol is uncertain. Methods: The ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) compared the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome and elevated atherogenic lipoproteins despite optimized statin therapy. Primary outcome was major adverse cardiovascular events (MACE; coronary heart disease death, nonfatal myocardial infarction, fatal/nonfatal ischemic stroke, hospitalization for unstable angina). Associations between baseline apoB or apoB at 4 months and MACE were assessed in adjusted Cox proportional hazards and propensity score–matched models. Results: Median follow-up was 2.8 years. In proportional hazards analysis in the placebo group, MACE incidence increased across increasing baseline apoB strata (3.2 [95% CI, 2.9–3.6], 4.0 [95% CI, 3.6–4.5], and 5.5 [95% CI, 5.0–6.1] events per 100 patient-years in strata 35–<50, and ≀35 mg/dL, respectively). Compared with propensity score–matched patients from the placebo group, treatment hazard ratios for alirocumab also decreased monotonically across achieved apoB strata. Achieved apoB was predictive of MACE after adjustment for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol but not vice versa. Conclusions: In patients with recent acute coronary syndrome and elevated atherogenic lipoproteins, MACE increased across baseline apoB strata. Alirocumab reduced MACE across all strata of baseline apoB, with larger absolute reductions in patients with higher baseline levels. Lower achieved apoB was associated with lower risk of MACE, even after accounting for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol, indicating that apoB provides incremental information. Achievement of apoB levels as low as ≀35 mg/dL may reduce lipoprotein-attributable residual risk after acute coronary syndrome. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01663402.gov; Unique identifier: NCT01663402.URL: https://www
    corecore