8,518 research outputs found

    Developing bilateral and spatial concepts in primary school-aged children: An empirical evaluation of the Anker Bilateral Spatial System

    Get PDF
    Background: Visual-spatial and visual-motor perceptual difficulties contribute to school-aged learning problems. Hence, a need exists to address children’s visual-spatial and visual-motor perceptual difficulties as early as possible in the child’s school career. Thus, this study reports on the evaluation of the Anker Bilateral Spatial System’s (ABSS) effectiveness in remediating primary school children’s perceptual difficulties. Method: Thirty-one children (17 boys and 14 girls) aged 6 to 12 years who had been identified by their classroom teacher as having observable visual-spatial and visual-motor perceptual difficulties participated in a 10-week pre/posttest intervention study. The study’s pre/posttest assessments included the Developmental Test of Visual-Motor Integration (VMI), the Spatial Awareness Skills Program Test (SASP), and two subscales of the School Function Assessment (SFA). Results: Paired t-test statistics were calculated on the pre/post intervention scores. Paired t-test statistics calculated (p = .05) that significant change had occurred in the writing speed (t = -3.978, p \u3c .001). Conclusion: Given that the study’s Year 1 students made progress in more areas of remediation than did any other year level, it is evident that the ABSS is particularly effective with this year grou

    EVALUATION AND RESPONSE TO EhVIRONMEl\TAL CHANGE

    Get PDF
    iii ACKNOWLEDGEMENT

    Mapping 6D N = 1 supergravities to F-theory

    Get PDF
    We develop a systematic framework for realizing general anomaly-free chiral 6D supergravity theories in F-theory. We focus on 6D (1, 0) models with one tensor multiplet whose gauge group is a product of simple factors (modulo a finite abelian group) with matter in arbitrary representations. Such theories can be decomposed into blocks associated with the simple factors in the gauge group; each block depends only on the group factor and the matter charged under it. All 6D chiral supergravity models can be constructed by gluing such blocks together in accordance with constraints from anomalies. Associating a geometric structure to each block gives a dictionary for translating a supergravity model into a set of topological data for an F-theory construction. We construct the dictionary of F-theory divisors explicitly for some simple gauge group factors and associated matter representations. Using these building blocks we analyze a variety of models. We identify some 6D supergravity models which do not map to integral F-theory divisors, possibly indicating quantum inconsistency of these 6D theories.Comment: 37 pages, no figures; v2: references added, minor typos corrected; v3: minor corrections to DOF counting in section

    A sex-chromosome mutation in Silene latifolia

    Get PDF
    Silene latifolia is dioecious, yet rare hermaphrodites have been found, and such natural mutants can provide valuable insight into genetic mechanisms. Here, we describe a hermaphrodite-inducing mutation that is almost certainly localized to the gynoecium-suppression region of the Y chromosome in S. latifolia. The mutant Y chromosome was passed through the megaspore, and the presence of two X chromosomes was not necessary for seed development in the parent. This result supports a lack of degeneration of the Y chromosome in S. latifolia, consistent with the relatively recent formation of the sex chromosomes in this species. When crossed to wild-type plants, hermaphrodites performed poorly as females, producing low seed numbers. When hermaphrodites were pollen donors, the sex ratio of offspring they produced through crosses was biased towards females. This suggests that hermaphroditic S. latifolia would fail to thrive and potentially explains the rarity of hermaphrodites in natural populations of S. latifolia. These results indicate that the Y chromosome in Silene latifolia remains very similar to the X, perhaps mostly differing in the primary sex determination regions

    Tate Form and Weak Coupling Limits in F-theory

    Full text link
    We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU(n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.Comment: 34 page

    Global aspects of the space of 6D N = 1 supergravities

    Get PDF
    We perform a global analysis of the space of consistent 6D quantum gravity theories with N = 1 supersymmetry, including models with multiple tensor multiplets. We prove that for theories with fewer than T = 9 tensor multiplets, a finite number of distinct gauge groups and matter content are possible. We find infinite families of field combinations satisfying anomaly cancellation and admitting physical gauge kinetic terms for T > 8. We find an integral lattice associated with each apparently-consistent supergravity theory; this lattice is determined by the form of the anomaly polynomial. For models which can be realized in F-theory, this anomaly lattice is related to the intersection form on the base of the F-theory elliptic fibration. The condition that a supergravity model have an F-theory realization imposes constraints which can be expressed in terms of this lattice. The analysis of models which satisfy known low-energy consistency conditions and yet violate F-theory constraints suggests possible novel constraints on low-energy supergravity theories.Comment: 41 pages, 1 figur

    Munchausen by internet: current research and future directions.

    Get PDF
    The Internet has revolutionized the health world, enabling self-diagnosis and online support to take place irrespective of time or location. Alongside the positive aspects for an individual's health from making use of the Internet, debate has intensified on how the increasing use of Web technology might have a negative impact on patients, caregivers, and practitioners. One such negative health-related behavior is Munchausen by Internet

    Radio pulsar populations

    Full text link
    The goal of this article is to summarize the current state of play in the field of radio pulsar statistics. Simply put, from the observed sample of objects from a variety of surveys with different telescopes, we wish to infer the properties of the underlying sample and to connect these with other astrophysical populations (for example supernova remnants or X-ray binaries). The main problem we need to tackle is the fact that, like many areas of science, the observed populations are often heavily biased by a variety of selection effects. After a review of the main effects relevant to radio pulsars, I discuss techniques to correct for them and summarize some of the most recent results. Perhaps the main point I would like to make in this article is that current models to describe the population are far from complete and often suffer from strong covariances between input parameters. That said, there are a number of very interesting conclusions that can be made concerning the evolution of neutron stars based on current data. While the focus of this review will be on the population of isolated Galactic pulsars, I will also briefly comment on millisecond and binary pulsars as well as the pulsar content of globular clusters and the Magellanic Clouds.Comment: 16 pages, 6 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer

    6D supergravity without tensor multiplets

    Get PDF
    We systematically investigate the finite set of possible gauge groups and matter content for N = 1 supergravity theories in six dimensions with no tensor multiplets, focusing on nonabelian gauge groups which are a product of SU(N) factors. We identify a number of models which obey all known low-energy consistency conditions, but which have no known string theory realization. Many of these models contain novel matter representations, suggesting possible new string theory constructions. Many of the most exotic matter structures arise in models which precisely saturate the gravitational anomaly bound on the number of hypermultiplets. Such models have a rigid symmetry structure, in the sense that there are no moduli which leave the full gauge group unbroken.Comment: 31 pages, latex; v2, v3: minor corrections, references adde

    F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds

    Full text link
    The Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X contains information about the abelian sector of the six-dimensional theory obtained by compactifying F-theory on X. After examining features of the abelian anomaly coefficient matrix and U(1) charge quantization conditions of general F-theory vacua, we study Calabi-Yau threefolds with Mordell-Weil rank-one as a first step towards understanding the features of the Mordell-Weil group of threefolds in more detail. In particular, we generate an interesting class of F-theory models with U(1) gauge symmetry that have matter with both charges 1 and 2. The anomaly equations --- which relate the Neron-Tate height of a section to intersection numbers between the section and fibral rational curves of the manifold --- serve as an important tool in our analysis.Comment: 29 pages + appendices, 5 figures; v2: minor correction
    corecore