16,650 research outputs found

    Discrete analogue computing with rotor-routers

    Full text link
    Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogues of continuous linear systems and deterministic analogues of stochastic processes.Comment: To appear in Chaos Special Focus Issue on Intrinsic and Designed Computatio

    Optical IP switching a solution to dynamic lightpath establishment in disaggregated network architectures

    Get PDF
    The landscape of the telecommunications environment is constantly evolving; in terms of architecture and increasing data-rate. Ensuring that routing decisions are taken at the lowest possible layer offers the possibility of greatest data throughput. We propose using wavelengths in a DWDM scheme as dedicated channels that bypass the routing lookup in a router. The future trend of telecommunications industry is, however, toward larger numbers of interlinked competing operator networks. This in turn means there is a lack of a unified control plane to allow current networks to dynamically provision optical paths. This paper will report on the concept of optical IP switching. This concept seeks to address optical control plane issues in disaggregated networks while providing a means to dynamically provision optical paths to cater for large data flows

    A Demonstration Study of the Quiet Time Transcendental Meditation Program

    Get PDF
    This manuscript presents a demonstration study of Quiet Time (QT), a classroom-based Transcendental Meditation intervention. The aim of the study is to assess the feasibility of implementing and evaluating QT in two pilot settings in the United Kingdom and Ireland. This study contributes to the field by targeting middle childhood, testing efficiency in two settings operating under different educational systems, and including a large array of measures. First, teacher and pupil engagement with QT was assessed. Second, the feasibility of using a quasi-experimental design and a wide range of instruments to measure changes in pupil outcomes before and after the intervention was assessed. This allows us to obtain information about which instruments might be feasible to administer and most sensitive to change. The first setting included 89 students from a primary school in the United Kingdom: those in sixth grade received the QT intervention, while those in fifth grade practiced meditation using the Headspace application. The second setting included 100 fifth- and sixth-grade students from two schools in Ireland: one received the QT intervention, the other served as a control. Recruitment and retention rates were high in both settings, and the intervention was feasible and accepted by students, parents and teachers. Implementation fidelity was lower in the United Kingdom setting where delivery started later in the school year and the practice was affected by preparation for the Standard Assessment Tests. These results show that QT may be feasibly delivered in school settings, and suggest the use of a compact battery of tests to measure impact. We find suggestive evidence that the intervention affected executive function as children who practiced QT showed improved working memory in both settings. In the Irish setting, pupils in the QT group had improved ability to control responses. These results have implications for future studies by a) demonstrating that implementation fidelity is highly context dependent and b) providing suggestive evidence of the malleability of children’s skills in middle childhood. The results of this demonstration study will be used to inform a larger RCT of the QT intervention

    Rayleigh scattering in the transmission spectrum of HAT-P-18b

    Get PDF
    We have performed ground-based transmission spectroscopy of the hot Jupiter HAT-P-18b using the ACAM instrument on the William Herschel Telescope (WHT). Differential spectroscopy over an entire night was carried out at a resolution of R400R \approx 400 using a nearby comparison star. We detect a bluewards slope extending across our optical transmission spectrum which runs from 4750 to 9250\AA. The slope is consistent with Rayleigh scattering at the equilibrium temperature of the planet (852K). We do not detect enhanced sodium absorption, which indicates that a high-altitude haze is masking the feature and giving rise to the Rayleigh slope. This is only the second discovery of a Rayleigh scattering slope in a hot Jupiter atmosphere from the ground, and our study illustrates how ground-based observations can provide transmission spectra with precision comparable to the Hubble Space Telescope.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Calculating effective resistances on underlying networks of association schemes

    Full text link
    Recently, in Refs. \cite{jsj} and \cite{res2}, calculation of effective resistances on distance-regular networks was investigated, where in the first paper, the calculation was based on stratification and Stieltjes function associated with the network, whereas in the latter one a recursive formula for effective resistances was given based on the Christoffel-Darboux identity. In this paper, evaluation of effective resistances on more general networks which are underlying networks of association schemes is considered, where by using the algebraic combinatoric structures of association schemes such as stratification and Bose-Mesner algebras, an explicit formula for effective resistances on these networks is given in terms of the parameters of corresponding association schemes. Moreover, we show that for particular underlying networks of association schemes with diameter dd such that the adjacency matrix AA possesses d+1d+1 distinct eigenvalues, all of the other adjacency matrices AiA_i, i0,1i\neq 0,1 can be written as polynomials of AA, i.e., Ai=Pi(A)A_i=P_i(A), where PiP_i is not necessarily of degree ii. Then, we use this property for these particular networks and assume that all of the conductances except for one of them, say cc1=1c\equiv c_1=1, are zero to give a procedure for evaluating effective resistances on these networks. The preference of this procedure is that one can evaluate effective resistances by using the structure of their Bose-Mesner algebra without any need to know the spectrum of the adjacency matrices.Comment: 41 page

    A Dynamical Analysis of the Proposed Circumbinary HW Virginis Planetary System

    Get PDF
    In 2009, the discovery of two planets orbiting the evolved binary star system HW Virginis was announced, based on systematic variations in the timing of eclipses between the two stars. The planets invoked in that work were significantly more massive than Jupiter, and moved on orbits that were mutually crossing - an architecture which suggests that mutual encounters and strong gravitational interactions are almost guaranteed. In this work, we perform a highly detailed analysis of the proposed HW Vir planetary system. First, we consider the dynamical stability of the system as proposed in the discovery work. Through a mapping process involving 91,125 individual simulations, we find that the system is so unstable that the planets proposed simply cannot exist, due to mean lifetimes of less than a thousand years across the whole parameter space. We then present a detailed re-analysis of the observational data on HW Vir, deriving a new orbital solution that provides a very good fit to the observational data. Our new analysis yields a system with planets more widely spaced, and of lower mass, than that proposed in the discovery work, and yields a significantly greater (and more realistic) estimate of the uncertainty in the orbit of the outermost body. Despite this, a detailed dynamical analysis of this new solution similarly reveals that it also requires the planets to move on orbits that are simply not dynamically feasible. Our results imply that some mechanism other than the influence of planetary companions must be the principal cause of the observed eclipse timing variations for HW Vir. If the sys- tem does host exoplanets, they must move on orbits differing greatly from those previously proposed. Our results illustrate the critical importance of performing dynamical analyses as a part of the discovery process for multiple-planet exoplanetary systems.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Can we identify genes with increased phylogenetic reliability?

    Get PDF
    © The Author(s) 2015. Topological heterogeneity among gene trees is widely observed in phylogenomic analyses and some of this variation is likely caused by systematic error in gene tree estimation. Systematic error can be mitigated by improving models of sequence evolution to account for all evolutionary processes relevant to each gene or identifying those genes whose evolution best conforms to existing models. However, the best method for identifying such genes is not well established. Here, we ask if filtering genes according to their clock-likeness or posterior predictive effect size (PPES, an inference-based measure of model violation) improves phylogenetic reliability and congruence. We compared these approaches to each other, and to the common practice of filtering based on rate of evolution, using two different metrics. First, we compared gene-tree topologies to accepted reference topologies. Second, we examined topological similarity among gene trees in filtered sets. Our results suggest that filtering genes based on clock-likeness and PPES can yield a collection of genes with more reliable phylogenetic signal. For the two exemplar data sets we explored, from yeast and amniotes, clock-likeness and PPES outperformed rate-based filtering in both congruence and reliability

    L\'evy walks and scaling in quenched disordered media

    Full text link
    We study L\'evy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric problem, we obtain the asymptotic behavior of the mean square displacement as a function of the exponent characterizing the scatterers distribution. We demonstrate that in quenched media different average procedures can display different asymptotic behavior. In particular, we estimate the moments of the displacement averaged over processes starting from scattering sites, in analogy with recent experiments. Our results are compared with numerical simulations, with excellent agreement.Comment: Phys. Rev. E 81, 060101(R) (2010
    corecore