271 research outputs found

    Group Incentives and Rational Voting

    Full text link
    Our model describes competition between groups driven by the choices of self-interested voters within groups. Within a Poisson voting environment, parties observe aggregate support from groups and can allocate prizes or punishments to them. In a tournament style analysis, the model characterizes how contingent allocation of prizes based on relative levels of support affects equilibrium voting behavior. In addition to standard notions of pivotality, voters influence the distribution of prizes across groups. Such prize pivotality supports positive voter turnout even in non-competitive electoral settings. The analysis shows that competition for a prize awarded to the most supportive group is only stable when two groups actively support a party. However, competition among groups to avoid punishment is stable in environments with any number of groups. We conclude by examining implications for endogenous group formation and how politicians structure the allocation of rewards and punishments.Comment: 34 pages, 1 figur

    Competing for the Platform: How Organized Interests affect Party Positioning in the United States

    Get PDF
    What explains which groups are included in a party coalition in any given election cycle? Recent advances in political party theory suggest that policy demanders comprise parties, and that the composition of a party coalition varies from election to election. We theorize three conditions under which parties articulate an interest group?s preferred positions in its quadrennial platform: when groups are ideologically proximate to the party median, when groups display party loyalty, and when groups are flush with resources. Using computer-assisted content analysis on a unique and rich data source, we examine three cycles of testimony that 80 organized groups provided to the Democratic Party. The analysis compares group requests with the content of Democratic and Republican National Committee platforms in 1996, 2000, and 2004. Results show that parties reward loyal groups and those that are ideologically proximate to the party, but offer no confirmation of a resource effect

    Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Get PDF
    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining

    Lighting during grow-out and Salmonella in broiler flocks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lighting is used during conventional broiler grow-out to modify bird behaviour to reach the goals of production and improve bird welfare. The protocols for lighting intensity vary. In a field study, we evaluated if the lighting practices impact the burden of <it>Salmonella </it>in broiler flocks.</p> <p>Methods</p> <p>Conventional grow-out flocks reared in the states of Alabama, Mississippi and Texas, USA in 2003 to 2006 were sampled 1 week before harvest (<it>n </it>= 58) and upon arrival for processing (<it>n </it>= 56) by collecting feathered carcass rinsate, crop and one cecum from each of 30 birds, and during processing by collecting rinsate of 30 carcasses at pre-chilling (<it>n </it>= 56) and post-chilling points (<it>n </it>= 54). Litter samples and drag swabs of litter were collected from the grow-out houses after bird harvest (<it>n </it>= 56). Lighting practices for these flocks were obtained with a questionnaire completed by the growers. Associations between the lighting practices and the burden of <it>Salmonella </it>in the flocks were tested while accounting for variation between the grow-out farms, their production complexes and companies.</p> <p>Results</p> <p>Longer relative duration of reduced lights during the grow-out period was associated with reduced detection of <it>Salmonella </it>on the exterior of birds 1 week before harvest and on the broiler carcasses at the post-chilling point of processing. In addition, starting reduced lights for ≥18 hours per day later in the grow-out period was associated with decreased detection of <it>Salmonella </it>on the exterior of broilers arriving for processing and in the post-harvest drag swabs of litter from the grow-out house.</p> <p>Conclusions</p> <p>The results of this field study show that lighting practices implemented during broiler rearing can impact the burden of <it>Salmonella </it>in the flock. The underlying mechanisms are likely to be interactive.</p

    On preventive blood pressure self-monitoring at home

    Get PDF
    Self-monitoring activities are increasingly becoming part of people’s everyday lives. Some of these measurements are taken voluntarily rather than being referred by a physician and conducted because of either a preventive health interest or to better understand the body and its functions (the so-called Quantified Self). In this article, we explore socio-technical complexities that may occur when introducing preventive health-measurement technologies into older adults’ daily routines and everyday lives. In particular, the original study investigated blood pressure (BP) measurement in non-clinical settings, to understand existing challenges, and uncover opportunities for self-monitoring technologies to support preventive healthcare activities among older adults. From our study, several important aspects emerged to consider when designing preventive self-monitoring technology, such as the complexity of guidelines for self-measuring, the importance of interpretation, understanding and health awareness, sharing self-monitoring information for prevention, various motivational factors, the role of the doctor in prevention, and the home as a distributed information space. An awareness of these aspects can help designers to develop better tools to support people’s preventive self-monitoring needs, compared to existing solutions. Supporting the active and informed individual can help improve people’s self-care, awareness, and implementation of preventive care. Based on our study, we also reflect on the findings to illustrate how these aspects can both inform people engaged in Quantified Self activities and designers alike, and the tools and approaches that have sprung from the so-called Quantified Self movement

    Diagnostic utility of snail in metaplastic breast carcinoma

    Get PDF
    Metaplastic breast carcinoma (MBC) is a rare subtype of breast cancer characterized by coexistence of carcinomatous and sarcomatous components. Snail is a nuclear transcription factor incriminated in the transition of epithelial to mesenchymal differentiation of breast cancer. Aberrant Snail expression results in lost expression of the cell adhesion molecule E-cadherin, an event associated with changes in epithelial architecture and invasive growth. We aimed to identify the utility of Snail, and of traditional immunohistochemical markers, in accurate MBC classification and to evaluate clinicopathologic characteristics and outcome
    corecore