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Identifying structural domains of proteins
using clustering
Howard J Feldman
Abstract

Background: Protein structures are comprised of modular elements known as domains. These units are used and
re-used over and over in nature, and usually serve some particular function in the structure. Thus it is useful to be
able to break up a protein of interest into its component domains, prior to similarity searching for example.
Numerous computational methods exist for doing so, but most operate only on a single protein chain and many
are limited to making a series of cuts to the sequence, while domains can and do span multiple chains.

Results: This study presents a novel clustering-based approach to domain identification, which works equally well
on individual chains or entire complexes. The method is simple and fast, taking only a few milliseconds to run, and
works by clustering either vectors representing secondary structure elements, or buried alpha-carbon positions,
using average-linkage clustering. Each resulting cluster corresponds to a domain of the structure. The method is
competitive with others, achieving 70% agreement with SCOP on a large non-redundant data set, and 80% on a
set more heavily weighted in multi-domain proteins on which both SCOP and CATH agree.

Conclusions: It is encouraging that a basic method such as this performs nearly as well or better than some far
more complex approaches. This suggests that protein domains are indeed for the most part simply compact
regions of structure with a higher density of buried contacts within themselves than between each other. By
representing the structure as a set of points or vectors in space, it allows us to break free of any artificial limitations
that other approaches may depend upon.
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Background
It is well understood that proteins are made up of struc-
tural and functional subunits or 'domains'. Ever since
domains were first described [1], numerous methods
have been proposed to identify domains within protein
structures. These approaches can vary widely depending
on whether the assignments are made from sequence
alone or from the 3D structure, and often involve partial
or complete manual intervention. The domain identifi-
cation problem is somewhat unique in structural biology
in that it is at least in some cases subjective. Different
authors have different, though not mutually exclusive,
ideas about what a domain should be - a functional unit
which is reused over and over [2]; a segment of a struc-
ture which has been conserved and reused genetically
across different families of proteins [3]; or simply a
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compact region of the protein where intra-atom contacts
outweigh contacts to atoms outside the domain, for
rapid self-assembly [1]. Domain definitions are also sepa-
rated into 'genetic domains' which may be comprised of
pieces from multiple chains, and regular ones which are
completely contained within a single chain.
As a result of these different paradigms, there still

does not exist a precise definition for a protein domain,
nor do experts always agree on the number or location
of domains within a given structure. This makes it
extremely difficult to come up with a fully automated
algorithm, then, to assign domain boundaries. That said,
the SCOP [4] and CATH [5] databases are typically used
for the problem. We found that these agree only 80% of
the time on number of domains however, over 75,500
chains that they have in common (SCOP 1.75 and CATH
3.4.0, data not shown)! Despite these problems, splitting
a protein into domains is often desirable. For example
when performing homology modelling, one often seeks a
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template to model parts of the structure from. In this
case it makes the most sense to find and use similar
domains from known structures, which may provide use-
ful templates when searching for similarity to the entire
chain may not. Knowledge of domain boundaries can
also be used to improve the accuracy of sequence align-
ments. Many different approaches have been used to split
proteins into domains, and these can be divided into
sequence-based and structure-based approaches.
Sequence-based domain identification usually involves

comparing the sequence in question to a database of
protein sequences where the domains have already been
defined (such as SCOP) using an alignment tool such as
BLAST [6]. More advanced methods such as HMMER
[7] make use of multiple sequence alignments of domain
families, such as those compiled by InterPro [3], and use
Hidden Markov Models (HMM) or other approaches to
compare a query sequence against them, recording hits
to the various domain families. Examples of sequence-
based domain databases include PFAM [8] and SMART
[9]. These methods work quite well when sequence iden-
tity to known folds is medium to high (above 35% or so)
but they fail on novel or unusual folds, or those with
only very distant homologs. The precise boundaries may
be off by quite a bit as well if there are large insertions
or deletions in the sequence relative to the rest of the
family.
Structure-based algorithms should in theory be simple

and straightforward, and often to the human eye it is ob-
vious where domain boundaries should be drawn when
viewing a 3D structure. Nevertheless, it has proved a dif-
ficult computational problem and no automated algo-
rithm agrees more than about 80% of the time with
SCOP or CATH assignments. A wide variety of methods
exist, some based on graph theory and contact maps,
some based on secondary structure layout. Some allow
only single cuts to be made resulting in domains made
of contiguous segments only and a maximum of 3 or 4
domains per chain, others do not have this restriction.
PUU [10] builds a contact matrix and tries to maximize
interactions within each unit and minimize them be-
tween units, through a series of cuts to the sequence.
PDP [11] also attempts to make a series of cuts to
maximize interactions but normalized the contact count
by the expected number of contacts, based on surface
area of the proposed domain. DDOMAIN [12] is also
based on a series of recursive cuts to try to maximize
intra-domain contacts, and also employs a pairwise sta-
tistical potential instead of a simple contact count which
slightly improves performance. DomainParser [13,14]
uses network flow algorithms, hydrophobic moment pro-
file and neural networks to produce its domain partition-
ing. NCBI's VAST algorithm [15,16], though not fully
described anywhere, makes use of domains identified as
compact structural units within protein 3D structures
using purely geometric criteria. DomainICA [17] uses
graph theory with secondary structure elements as the
nodes and edges determined by proximity. The algo-
rithm partitions the graph to maximize cycle distribu-
tions, and its simplicity is appealing. dConsensus [18]
provides a means for rapidly comparing assignments by
the different approaches.
Despite the number of algorithms that have been

described, most of comparable performance, it seems each
has certain disadvantages. As mentioned some methods
cannot deal with domains comprised of multiple contigu-
ous segments, and most cannot deal with genetic domains
(those with pieces from multiple chains). Some methods
are very slow, and some cannot place boundaries midway
through secondary structure elements. This study investi-
gates a novel, intuitive algorithm for domain identifica-
tion by simply clustering α-carbon positions or secondary
structure vectors in space. It is very fast, taking under
one second for all but the largest proteins, and intuitively
obvious. By its nature it has no maximum number of
domains it can define, nor limitation on where domain
boundaries can occur. Even domains comprised of pieces
from multiple chains, such as when domain swapping
occurs [19,20], are detected without changes to the
algorithm.

Results
Two distinct but related algorithms were studied, as
described in Methods: the α-carbon based algorithm
(CA) and the secondary structure element based algo-
rithm (SS). Both make use of average-linkage clustering
to produce and then cut a dendrogram; they differ only
in the objects that they cluster. The main data set used
to optimize the algorithms was the ASTRAL30 set, con-
sisting of 8792 domains in 7178 non-redundant protein
chains. Only 7076 of these chains actually still existed in
the current Protein Data Bank (PDB) however and so
comprised the training set used in this study for the CA
algorithm. Only 6841 of these had sufficient secondary
structure to use the SS algorithm, so this slightly smaller
training set was used in that case. Both algorithms have
only two adjustable parameters: the minimum value for
cutting the cluster dendrogram, m, and the step size to
determine whether to make a cut, s.
For the CA algorithm, a range of these values were

tested, and the performance on the training set recorded
for each of 1-, 2-, 3-, and 4-domain chains, summarized
in Table 1. An assignment was considered correct when
it agreed with SCOP, since ASTRAL is based on the SCOP
domain database. The Matthews Correlation Coefficient
(MCC) was also computed, which gives a statistically less
biased measure (compared to percentage correct) of clas-
sification success given the large proportion of single



Table 1 CA algorithm assignment success

m s 1-domain 2-domain 3-domain 4-domain Overall1

15 5 70% (0.49) 59% (0.34) 47% (0.28) 35% (0.21) 67%

22 5 75% (0.52) 58% (0.35) 45% (0.29) 32% (0.21) 69%

30 5 88% (0.52) 46% (0.37) 32% (0.31) 22% (0.21) 76%

22 3 63% (0.50) 49% (0.24) 42% (0.18) 32% (0.13) 58%

22 5 75% (0.52) 58% (0.35) 45% (0.29) 32% (0.21) 69%

22 8 87% (0.44) 44% (0.33) 26% (0.27) 14% (0.16) 75%

Random (see text) 76% (≈0) 15% (≈0) 2% (≈0) 0% (≈0) 60%

Only buried α-carbons were clustered, and adjacency constraint was enforced in all cases. Success given on the ASTRAL30 data set as a function of m and s.
Matthews correlation coefficient is given in parentheses. 1Total, regardless of number of domains.
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domain proteins in the data set. The most obvious effect
was that increasing m or s increased the success rate on
single-domain proteins, but generally decreased success
in the multiple-domain assignments. This is logical as
larger values of m and s make it less likely that a cut will
be made in the dendrogram, so that a single domain is
assigned more often. Assigning a single domain all of the
time would of course result in 100% success in single do-
main protein assignments and 75% success overall which
corresponds to the fraction of single domain proteins
in the set – as good as any of the parameter sets tested
here – however the MCC would be poor. Thus it is
important not to put too much value on the overall
assignment success, as tempting as it may be to do so.
A random assigner was also employed, which chose a
number of domains based on the distribution of domains-
per-chain in SCOP 1.75, and simply split the sequence
equally along its length. As seen in Table 1, this random
Table 2 SS algorithm assignment success

Linkage metric m s 1-doma

Average midpt 19 5 71% (0.5

Average midpt 22 5 75% (0

Average midpt 25 5 80% (0.5

Average midpt 22 3 68% (0.5

Average midpt 22 5 75% (0

Average midpt 22 7 84% (0.5

Average closest 22 3 79% (0

Average closest 22 4 81% (0.5

Complete midpt 40 5 71% (0.5

Complete midpt 40 7 73% (0

Complete midpt 40 9 77% (0.5

Complete midpt 36 7 67% (0.4

Complete midpt 38 7 70% (0

Complete midpt 42 7 76% (0.5

Given on the ASTRAL30 data set as a function of m and s. Linkage refers to the clus
meaning distances between secondary structure elements were taken between the
optimal combination of m and s are shown in bold for each section of the table. M
approach did quite well on single domain proteins but
quite poorly on the multi-domain proteins – the CA
algorithm clearly does better than chance. The values
of m=22Å, s=5Å were chosen because they gave the
best compromise of success rates and MCC for multi-
domain proteins while still having reasonable performance
on the single-domain ones. Only 4% of the 2-domain
proteins, and no structures with more than 2 domains, in
the ASTRAL set had their corresponding cut in the den-
drogram at a value of m < 22Å so this is a reasonable
choice.
Similar runs for the SS algorithm are shown in Table 2.

Again increasing m and s generally improved single
domain success at the cost of multi-domain assignments.
For this method complete-linkage clustering was also
tested (in addition to average-linkage), and two distance
metrics to be used for clustering were tested: closest
approach distance of the secondary structure elements,
in 2-domain 3-domain 4-domain

2) 60% (0.35) 47% (0.28) 34% (0.19)

.55) 60% (0.38) 46% (0.31) 34% (0.21)

6) 58% (0.40) 43% (0.32) 28% (0.20)

3) 51% (0.29) 41% (0.20) 35% (0.15)

.55) 60% (0.38) 46% (0.31) 34% (0.21)

3) 55% (0.40) 38% (0.33) 18% (0.18)

.55) 51% (0.51) 40% (0.41) 27% (0.27)

4) 52% (0.38) 39% (0.28) 28% (0.19)

1) 45% (0.25) 38% (0.20) 22% (0.10)

.51) 48% (0.28) 38% (0.23) 23% (0.13)

0) 50% (0.32) 38% (0.26) 18% (0.12)

9) 47% (0.24) 37% (0.19) 24% (0.11)

.50) 47% (0.26) 38% (0.21) 23% (0.11)

1) 49% (0.31) 38% (0.25) 23% (0.14)

tering technique used in determining the domains. Metric is either midpt,
ir midpoints, or closest, meaning the closest approach distance was used. The
atthews correlation coefficient is given in parentheses.
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and midpoint distance. While results were comparable,
the average-linkage using midpoint distance performed
best on multi-domain proteins, with m=22Å and s=5Å
having the best compromise on single- and multi-
domain success rates. These settings were used for the
remainder of the study.
For each algorithm we also tested removing the adja-

cency constraint - i.e. enforcing a distance of 4Å for
Cαs in the same secondary structure element, for the
CA algorithm, or a distance of 4Å between consecu-
tive secondary structure elements in the SS algorithm.
In both cases removing this had a slight detrimental
effect on the success rate (1-2% overall, not shown), so
the constraints were left in.
For the CA algorithm, initial tests were done cluster-

ing all α-carbons. Using the buried α-carbons only (see
Methods) resulted in marked improvement however, in-
creasing single, 2-, 3- and 4-domain proteins from 70%,
55%, 41% and 24% (65% overall) to 75%, 58%, 45% and
32%, respectively (69% overall success). Focusing only
on the more buried residues helps make the domain
boundaries more clear to the clustering algorithm and
so became a permanent part of the algorithm.
The effect of the ‘gold standard’ chosen was also inves-

tigated. As mentioned, the success rates in Tables 1 and
2 all used SCOP as the source for the correct answer
to each domain splitting problem. However, switching
to CATH instead (and discarding the few that were not
in CATH) increased the success for the SS algorithm at
single domain proteins by 8%, and 2-domain proteins
by 7%, while 3- and 4-domain success rates remained
about the same (Table 3). Overall success increases
from 70% to 74%. Thus the SS algorithm agrees better
with CATH than SCOP. This is to be expected since
SCOP tends to assign domains with some regard to
function, while CATH, like the algorithms in this study,
looks at domains from a more structural perspective. If
we allow the assignments to match either SCOP or
CATH, when they differ, performance increases even
Table 3 Performance of assignment algorithms as a function

Algorithm1 Correct answer 1-domain 2-

SS SCOP 75%

SS CATH 83%

SS SCOP or CATH3 83%

SS SCOP (given)4 99%

CA SCOP 75%

CA CATH 81%

CA SCOP or CATH3 82%

CA SCOP (given)4 100%

All runs are with m=22Å and s=5Å, and with adjacency constraint enforced, on the
secondary structure based one. 2Total, regardless of number of domains. 3Where SC
chosen in these runs. 4The algorithms were forced to cut into the number of doma
further by 0%, 8%, 17% and 21% on 1-, 2-, 3-, and 4-
domain proteins respectively (5% overall improvement).
Lastly as an interesting test, if we choose m and s to
produce the same number of clusters as that given by
SCOP and compare to SCOP, so that we are only judg-
ing the boundary assignments of the algorithm (the
only failures were when the overlap was less than 75%),
we see 99%, 86%, 71% and 75% success on 1-, 2-, 3- and
4-domain proteins respectively (95% overall). This is the
best we can hope to achieve with perfect choice of cut
for every structure. Any further improvement in the
algorithm would need to come from better choice of
clustering technique. This indicates that the method
chooses well where to cut, once the number of cuts to
make is known.
Doing the same for the CA algorithm (Table 3), again

it was found that when comparing to CATH instead of
SCOP, success on single domain proteins increased by
6% and 2-domain and 4-domain proteins each had 9%
higher success, while 3-domain proteins were largely un-
changed (overall improved by 4% to 73%). So as before,
the CA algorithm produces assignments which are more
in line with the philosophy adopted by CATH. Allowing
the assignments to match either SCOP or CATH when
they differ yields significant further increases of 1%,
7%, 19% and 19% for 1-, 2-, 3- and 4-domain proteins
respectively (6% overall improvement) and given the
number of domains to test the quality of boundary
assignments resulted in 100%, 84%, 81% and 69% for
1-, 2-, 3- and 4-domain proteins respectively, or 95%
overall. These results were very comparable to those
found with the SS algorithm.
Table 4 compares the above results with some of

the best available domain assignment algorithms cur-
rently available, as well as a random assigner, on the
ASTRAL30 database. DDomain offers three assignments
using different sets of parameters, but the AUTHORS
parameters performed best so only these are reported.
All the algorithms clearly perform better than random,
of choice of correct answer

domain 3-domain 4-domain Overall2

60% 46% 34% 70%

67% 47% 34% 74%

75% 64% 55% 79%

86% 71% 75% 95%

58% 45% 32% 69%

67% 45% 41% 73%

74% 64% 60% 79%

84% 81% 69% 95%

ASTRAL30 data set. 1CA refers to the α-carbon based algorithm and SS the
OP and CATH differ, the choice which matched closest to our assignment was
ins specified by SCOP for each structure.



Table 4 Comparison of the present work with previously published algorithms, ASTRAL30

Algorithm1 1-domain 2-domain 3-domain 4-domain Overall2

SS Algorithm 75% 60% 47% 34% 70%

CA Algorithm 75% 58% 46% 33% 69%

DDomain 83% 58% 43% 44% 76%

DomainParser2 80% 56% 49% 25% 73%

PDP 74% 62% 49% 46% 70%

Random (see text) 76% 15% 2% 0% 60%

Present work compared to DDomain[12] (using AUTHORS parameters), DomainParser2[13] and PDP[11]. 1CA refers to the α-carbon based algorithm and SS the
secondary structure based one. 2Total, regardless of number of domains.
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and all have very similar performance within a few per-
centage points of each other, making it difficult to single
out one as better than the rest, except on 4-domain pro-
teins where DDomain and PDP excel.
With optimization complete, the algorithms were then

run on the Benchmark_2 test set. This set (see Methods)
is significant in that the distribution of number of
domains is intended to match that of the genome, and
not the over-weighting of single domain proteins found
in the PDB. Additionally, SCOP and CATH, as well as
the structure authors, agree on the number of domains
for all structures in this data set making the correct re-
sult less ambiguous. Note that this test set only contains
4 proteins with 4 domains, so reporting success rates for
these is not statistically meaningful.
Table 5 compares the performance on Benchmark_2

to other published methods, and we find the CA algo-
rithm is highly competitive (92% single-domain, 78% for
2-, 76% for 3- and 25% for 4-) at only 3% less overall
than the best method (PDP) and roughly tied with
DomainParser2. The random assigner performed signifi-
cantly worse with averages of 71%, 15%, 1% and 0% cor-
rect for single, 2-, 3- and 4-domain proteins respectively
(31% overall) over 3 trials. All the methods are
clearly better than random. Again for DDomain, the
AUTHORS settings were used. The SS algorithm
does not fare as well on this set, performing signifi-
cantly more poorly with success rates of 86%, 64%,
60% and 0% for 1-, 2-, 3-, and 4-domain proteins
Table 5 Comparison of the present work with previously pub

Algorithm1 Time2 1-domain 2-do

SS Algorithm 5s 86% (0.75) 64

CA Algorithm 26s 92% (0.82) 78

DDomain 497s 94% (0.78) 75

DomainParser2 398s 98% (0.86) 75

PDP 99s 92% (0.93) 84

Random (see text) 1s 71 ± 3% (<0) 15 ± 7

Present work compared to DDomain[12] (using AUTHORS parameters), DomainPars
coefficient is given in parentheses. 1CA refers to the α-carbon based algorithm and
the binaries or detection algorithms over the full dataset on a single 2.93 GHz i7 CP
(69% overall). The overall rate of over-cutting for CA
was 8.5% while for under-cutting it was 10.5%, com-
parable to that observed with the other methods ex-
cept PDP which showed a stronger tendency to
overcut rather than undercut (data not shown). The
MCC for each assignment is also provided in Table 5,
to again help compensate for the large bias towards
single-domain structures in the data set. This pro-
duced the same ranking as the raw success rates
however, if the 1-, 2- and 3-domain MCCs are just
averaged. In terms of execution speed, the CA algo-
rithm is over 15 times faster than either DomainPar-
ser2 or DDomain, and about 4 times faster than PDP,
while the SS algorithm is faster than the CA by a fur-
ther factor of 5.
Lastly we tested the present methods on the

Benchmark_3 set requiring 90% or better overlap.
Benchmark_3 is a subset of the Benchmark_2 structures
in which both SCOP and CATH also agree upon the
exact boundaries of the domains, within a small toler-
ance, suggesting that the domain boundaries are sharply
defined in this set. As seen in Table 6, the CA algorithm
achieved 77% correct assignment (7% failure in overlap,
17% failure in domain number). Removing the constraint
that prevents domain boundaries midway through se-
condary structure elements increased the performance to
79%, demonstrating that it is not always advisable to
enforce this condition. Again the SS algorithm did not
perform too well on this data set. The best method, PDP,
lished algorithms, Benchmark 2

main 3-domain 4-domain Overall3

% (0.47) 60% (0.46) 0% (−0.03) 69%

% (0.69) 76% (0.69) 25% (0.32) 80%

% (0.68) 48% (0.56) 25% (0.16) 75%

% (0.71) 64% (0.60) 50% (0.39) 79%

% (0.82) 68% (0.69) 75% (0.55) 83%

% (<0) 1 ± 2% (<0) 0% (<0) 31 ± 3%

er2[13] and PDP[11] on the Benchmark 2 data set. Matthews correlation
SS the secondary structure based one. 2Time taken for the actual execution of
U. 3Total, regardless of number of domains.



Table 6 Comparison of the present work with previously published algorithms, Benchmark 3

Algorithm1 1-domain 2-domain 3-domain 4-domain Overall2

SS Algorithm 65% (0.70) 50% (0.39) 38% (0.31) 0% (−0.04) 53%

CA Algorithm 93% (0.87) 76% (0.71) 52% (0.59) 0% (−0.01) 77%

DDomain 94% (0.80) 66% (0.71) 43% (0.56) 33% (0.21) 74%

DomainParser2 96% (0.92) 71% (0.74) 67% (0.67) 67% (0.50) 79%

PDP 89% (0.93) 76% (0.82) 67% (0.71) 100% (0.77) 80%

Present work compared to DDomain[12] (using AUTHORS parameters), DomainParser2[13] and PDP[11] on the Benchmark 3 data set. Matthews correlation
coefficient is given in parentheses. 1CA refers to the α-carbon based algorithm and SS the secondary structure based one. 2Total, regardless of number of
domains.
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did slightly better at 80% success. The MCC values show
a similar trend in performance with CA just marginally
behind DomainParser2 and PDP.

Discussion
It is instructive to look at the types of mistakes made by
the CA algorithm, which performed best overall on the
test data sets, of the two methods developed in this
work. There have already been detailed comparisons of
SCOP and CATH published [21] so we will focus on the
Benchmark_2 set where both databases agree. Of the
31 failures, only 2 were due to the overlap being less
than 0.75 (and the number of domains otherwise correct).
The 4 single domain proteins that were missed were
assigned as 2- or 3-domain. There were also 7 2-domain
proteins assigned as single domain, and another 5 assigned
to have 3-domains. The other common error was assign-
ing 3-domain proteins as 2-domain, with 4 occurrences.
An example from each of these failure classes is shown in
the following figures.
2PCD chain M is a single domain assigned as two

domains (Figure 1a). However the second domain
(yellow) involves less than 10% of the chain and is in a
very loopy region at the N-terminus which indeed is not
close to anything else except a paired ß-strand at the
C-terminus, also isolated from the rest of the protein.
The present method does not pay any special attention
Figure 1 PDB 2PCD domain assignments. a) Chain M, assigned by the C
too exposed and excluded from the assignment. b) Assignment run on the
to ß-strand pairing however, and perhaps enforcing that
members of a single ß-sheet be in the same domain
might improve the performance further. This particular
structure is actually a dimer in nature (with chain A)
[22], and so running our assigner on the dimer
(Figure 1b) does indeed result in two domains: chain A
and the first 50 residues of chain M form the first
domain (blue), and the remainder of chain M the second
(yellow). Thus the ‘second domain’ assigned for chain
M was actually just part of the larger domain formed
by chain A, its partner. This example highlights the
potential danger of only looking at single chains for
evaluating domain assignments. In this case ignoring
chain A here causes a correct assignment to appear
incorrect. Unfortunately most assignment methods can-
not deal with domains spanning multiple chains, and so
for the purposes of comparison and benchmarking, such
a simplification is necessary. Ideally however, domain
splitting should be performed on the full biological unit
and we expect the present method to excel in its ability
to do so. Over 54% of the Benchmark_2 structures are
annotated as multimers by their authors however only
17 of the 31 failures (55%) occur in multimers so this
does not appear to be the only factor with impact on
the overall performance of the method.
A more clear failure of the algorithm is 1YUA chain

A, which is a two domain protein assigned to be a single
A algorithm as two domains shown in yellow and blue. Gray region is
dimer of chains A and M together.



Figure 2 PDB 1YUA chain A domain assignment. It is assigned
by the CA algorithm as single domain but is actually two domains,
as shown in yellow and blue.
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domain. Visually the protein is clearly two distinct
domains, and the problem here is that they are just very
small. Lowering our minimum cut value, m, to 19Å and
running the assignment again (Figure 2) gets it exactly
correct (but would get other examples incorrect). Our
algorithm as parameterized is simply biased towards
slightly larger domains than seen here, and so may pro-
duce incorrect assignments for very small domains.
1GDD chain A is a two-domain protein assigned as

three domains - the smaller domain location is assigned
correctly, but the larger one is split in two (Figure 3).
The SS algorithm correctly assigns two domains (and
their cut points within 11 residues) so it is interesting to
investigate why the CA algorithm decides on making an
extra cut. Again this extra cut breaks up a six-stranded
ß-sheet. It seems the lower density of Cαs around the
sheet ‘fools’ the algorithm into splitting it up. Some
sort of constraint to keep ß-sheets together would help -
putting all Cαs within the same ß-sheet at distance 4Å
from each other in the distance matrix results in a correct
assignment of two domains (and perfect cut locations).
Figure 3 PDB 1GDD chain A assignments. a) Assigned by the CA algorit
assignment. b) Actual domain assignment in Benchmark_2 set, two distinc
1PKY chain A is an example of a three-domain protein
we assign as two-domain (Figure 4). This Pyruvate
Kinase structure is a homo-tetramer. The CA algorithm
here lumps the C-terminal domain together with the
large central domain. However, using instead chain B
results in a perfect split. Chains C and D are cut the same
as chain A. The SS algorithm, which is less sensitive to
small perturbations in coordinates since it only depends
on the secondary structure elements, correctly splits all
four chains into three domains. So in this case the CA
algorithm proves to be too sensitive to the precise 3D
coordinates used. Although the pairwise RMSD between
chains A and B is only 0.43Å, this is apparently sufficient
to make the difference between a correct and incorrect
assignment - this is just an unfortunate borderline case
and investigation of the clustering dendrogram (not
shown) shows that this structure is close to the cutoff of
m=22Å.
Finally, 5EAU chain A was correctly assigned as

2-domain but had an overlap of only 73% (Figure 5). This
is a large all-helical protein, and while the cores of the
two domains are essentially correct, it is the border re-
gion which is in dispute, shown in green in Figure 5.
There is a long helix from residue 220–260 which serves
to link the two domains together, and we assign it, along
with a few neighboring helices, to one domain while
SCOP and CATH assign it to the other. Interestingly
the SS algorithm fares better on this one, with 89%
overlap on its 2-domain assignments, only classifying
the N-terminal helix in the ‘wrong’ domain (as per
CATH) – this assignment for the helix does match SCOP
however.
The above examples demonstrate several of the short-

comings of the CA algorithm, where improvement could
be made in the future. It tends to perform best when the
full biological assembly is provided, and may partition
the complex differently depending how many copies of
each chain are included. It is sensitive to quite small per-
turbations in coordinates for structures that are close to
the cutting boundary (m); and for very small domains it
hm as three domains. Gray region is exposed and excluded from the
t domains.



Figure 4 PDB 1PKY domain assignments. a) Chain A, assigned by the CA algorithm as two domains. b) Chain B, assigned by the CA algorithm
as three domains, which matches exactly the correct split in the Benchmark_2 set.

Feldman BMC Bioinformatics 2012, 13:286 Page 8 of 12
http://www.biomedcentral.com/1471-2105/13/286
will tend to undercut. DDomain, domainparser2 and
PDP also fail mostly due to incorrect number of
domains rather than overlap under 75%, and in each case
roughly half the incorrect assignments overlap with the
CA method’s failures. Thus the CA algorithm correctly
assigns about half the failures of each of the other ones.
In total 10 failed assignments are unique to the CA
method including 2PCD, 1GDD and 5EAU above.
Interestingly there are 5 structures that none of the
algorithms assign correctly (1D0G chain T, 1DCE chain
A, 1DGK chain N, 1KSI chain A and 2GLI chain A).
An example where the CA algorithm assigned two

domains correctly while the others all assigned three
domains is 1FMT chain A (Figure 6). This is a mono-
meric tRNA formyltransferase protein, and although the
split into 3 domains does not appear unreasonable vi-
sually, the two domains on the left of figure 6a are ac-
tually only one domain. It is not clear why the other
Figure 5 PDB 5EAU chain A domains. The portions of the two
domains that the assignment by the CA algorithm and assignment
in the Benchmark_2 set agree upon are shown in blue and yellow.
The region shown in green is assigned to the yellow domain by the
CA algorithm, but the blue domain by the data set.
programs all fail on this example, but it does demon-
strate again that no one of the methods is always the
most correct.

Conclusions
This work presents two novel, related, domain assign-
ment algorithms, one based on clustering buried
α-carbons and one clustering secondary structure ele-
ments. They are appealing due to their intuitiveness,
speed and extreme simplicity – having only two adjust-
able parameters – and are able to perform competitively
with the best algorithms available. The CA algorithm is
several times faster than other methods, and comes
within a few percent of the top performer on all the data
sets investigated, making its use appealing. It is worth
noting that no one algorithm performed best on the
ASTRAL30 and the Benchmark data sets. The algo-
rithms in this study also have the advantage that they
can be run on arbitrary numbers of chains, and have
no artificial limitations on how many domains or seg-
ments they may assign. The CA algorithm is not limited
to assigning cuts only at secondary structure boundaries,
either.
The examples studied indicate that the CA algorithm

should not be used when very small domains are
expected. Also when multiple copies of a chain exist in
the asymmetric unit, it should be run on each separately
and perhaps the consensus assignment taken due to its
sensitivity to small perturbations in coordinates. Keeping
these limitations in mind, it is encouraging that such
simple, fast methods can perform as well as they do.
Domain assignment within 3D protein structures is a

difficult subject to tackle, due to it being an ill-defined
problem to begin with. Different people have different
definitions of what a domain is, and this definition might
change depending on the intended application. Thus
measuring the performance of a particular method, and
comparing it to others, is difficult at best. That said, in
some cases there is a clear and unambiguous split and
the data sets from Holland et al. [23] go a long way
towards providing a fair set to test on. The one



Figure 6 PDB 1FMT chain A domain assignments. a) Assignment by the CA algorithm as two domains, which matches exactly the correct
split in the Benchmark_2 set. b) Incorrect assignment by DDomain, DomainParser2 and PDP. The extra incorrect domain is shown in green.
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important thing they have overlooked is the import-
ance of considering the biological unit. Assignments
need to be run on the full biological unit of a protein
which should allow more accurate assignments for multi-
mers, or else those structures which are not monomers
should be further excluded from the test set.
Even the best methods are still far from perfect, and

this is in part due to the subjective nature of the prob-
lem. With a problem like domain assignment, rather
than focusing on which method is a few percent closer
to SCOP or CATH, for example, it is perhaps more pru-
dent to simply look at the cases where assignments dif-
fer from the ‘correct’ answer and ask ‘is this reasonable’?

Methods
Two distinct though related algorithms were developed
for this study, one using α-carbons and one secondary
structure elements. Both methods attempt to cluster
pieces of the structure using hierarchical agglomerative
techniques.

Alpha carbon algorithm
All α-carbons within the structure were identified, and
all other atoms were ignored for the remainder of the
process. The atoms were then divided into two sets:
'buried' and 'exposed'. Buried α-carbons were defined as
those with 9 or more α-carbons within 7Å. These values
were found empirically to correspond well to an intuitive
definition of buriedness.
Next, an NxN pairwise distance matrix is constructed

for all N buried α-carbons and these are clustered using
average linkage clustering [24] to produce a dendrogram.
Average linkage is a form of the more general hierarch-
ical agglomerative clustering technique. Briefly, for a
given set of N objects, and a distance matrix of their
pairwise distances, objects are iteratively grouped two at
a time to form larger and larger clusters. The pair with
the shortest distance at each iteration is chosen for mer-
ging, and the distance of the newly formed cluster to
existing clusters is computed based on the linkage
employed. With average linkage, the distance between
two clusters of objects is defined as the average distance
between all pairwise combinations of objects within the
two clusters. After N-1 iterations, a single cluster con-
taining all N objects remains, along with a dendrogram
with N-1 non-leaf nodes corresponding to the merges
performed at each iteration.
By cutting the dendrogram at a specific level, clusters

of the original N objects are formed. Thus cutting this
dendrogram at a specific point produces a number of
clusters of α-carbons, which can then be defined as the
domains. Obviously choosing where, and when, to cut
the dendrogram is the key problem as this determines
the number (and location) of domains (Figure 7). We
define two parameters, m, the minimum domain size,
and s, the step size. We refer to the distance axis along
the dendrogram as d. To choose a cut point d=D, we
proceed as follows:

1. Start at D = max d, the root of the dendrogram
2. If D < m then stop without making a cut
3. If no branch node of the dendrogram is traversed
between D and D - s, stop and make the cut

4. Set D = d’, the value at the branch node traversed in
the previous step

5. Return to step 2 and repeat

Thus the algorithm seeks to cut at a region of clear
separation in the dendrogram, but not making the
domains too small. These parameters were optimized on
a number of test sets as described in Results, and values
of m = 22Å and s = 5Å produced the best results.
Residues which were initially classified as exposed are

at this point added to the cluster of the nearest buried
atom. Clustering was also tested on all α-carbons, but
using just the buried ones both tended to produce better
results, and was also faster, there being less points to
cluster.
Lastly, a bit of 'clean-up' is performed. This clustering

technique can sometimes result in some small clusters



Figure 7 Typical dendrogram resulting from average linkage clustering. Original objects are numbered on the right, and a potential cut is
shown in magenta. This particular cut would result in six clusters: (1, 2), (3, 4), (9, 10), (15, 16, 17), (5, 6) and (7, 8, 11, 12, 13, 14).

Figure 8 PDB 1GDD with vector representation used by the SS
algorithm shown. Vectors representing helices are in green, and
those representing strands are orange. The direction of the vector in
each case is from N- to C-terminus.
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of just a few residues being created, and these were
eliminated by simply deleting any clusters less than 10%
of the size of the largest cluster. Also, because no heed
is paid to chain or residue sequence, the algorithm
would frequently produce small stretches of a few amino
acids from one domain, within the sequence of another
when adding back the exposed α-carbons to the clusters.
In order to try to minimize the number of small segments
like this, the sequence is scanned linearly for segments less
than 20 residues in length. Any such short segments
which are enclosed on both sides by residues of the same
cluster, or which appear at the ends of a chain, are con-
sumed by the adjacent cluster and become a part of it.
A minor variation on the algorithm was tested which

helped prevent placing domain boundaries midway
through secondary structure elements. When building
the pairwise distance matrix, all residues pairs which
were within the same secondary structure element, as
defined by DSSP [25], were given a distance of 4Å -
roughly the distance between adjacent α-carbons along
the backbone. While this did provide a slight improve-
ment in performance on the test set, this may be consid-
ered a limitation rather than an advantage and so is left
up to the discretion of the user whether to make use of
it or not. It was used in all results presented here unless
noted otherwise.

Secondary structure algorithm
We also experimented with a routine that looked only at
secondary structure elements. Its performance was com-
parable to the α-carbon approach and was faster, there
being less objects to cluster. Ultimately as shown in
Results, the α-carbon method was found to be superior,
and preferable, being independent of any particular sec-
ondary structure definition.
First secondary structure elements are identified, using

DSSP. Elements are represented by vectors, with direc-
tion computed as the largest eigenvector of the cova-
riance matrix of the Cα coordinates comprising the helix
or strand (Figure 8). We denote this direction by a unit
vector, v* . The center of mass of the element is found by
simply averaging the atom coordinates, and is denoted
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by c* . Thus if r⇀1 is the position of the first α-carbon in
the helix or sheet, then the start of the secondary structure
vector is given by c* þ r⇀1 � c*ð Þ � v*ð Þv*, and similarly
the end is given by c* þ r⇀2 � c*ð Þ� v*ð Þv*, where r⇀2 is the
position of the last Cα in the secondary structure element.
A special check is made for elements spanning chain

breaks - these are broken into two elements, one on
either side of the break. Although helices and β-strands
often curve, the curve is usually gentle and we found that
they are represented sufficiently well by a single vector.
Next, as in the previous algorithm, an NxN distance

matrix is constructed. Here the distance between two
secondary structure elements was defined either as the
distance of closest approach of the two corresponding
secondary structure vectors, or as the distance between
the centers of the vectors. In practice the latter was
found to work better. Again average linkage clustering
was employed to produce a dendrogram, and the same
procedure as in the previous algorithm was used to
determine where and if to cut the dendrogram to pro-
duce clusters of the secondary structure elements. In
this case m = 22Å and s = 5Å were found to be the opti-
mal values, interestingly the same values used for the
α-carbon algorithm despite the fact that much larger
objects were now being clustered.
As before, very small domains are undesirable so all

clusters of one or two secondary structure elements
were discarded. Lastly, domain cut points were defined
midway along the sequence between consecutive sec-
ondary structure elements that belonged to different
clusters. This choice is somewhat arbitrary but usually
produces satisfactory results.
A variation to this algorithm which obtained slightly

improved results, was to mark secondary structure ele-
ments that were adjacent in sequence space as having a
distance of 4Å when constructing the distance matrix
before clustering. This was analogous to the variation in
the α-carbon algorithm where those atoms in the same
helix or sheet were set to have a distance of 4Å in that
distance matrix. This modification tended to keep con-
secutive elements within the same cluster unless there
was a good reason not to, and thus resulted overall in
fewer disjoint segments among the assignments.
Both algorithms have been implemented within MOE

[26] using the SVL programming language. Source code is
available as supplemental information. Average run times
for a single protein chain were 45ms for the CA algorithm
and 9ms for SS, on a single 3 GHz CPU. The majority of
the time was spent building the cluster dendrogram.
Data sets
As mentioned earlier, there is no ideal test set for do-
main assignment, which makes it difficult to evaluate
the performance in an unbiased manner. Holland et al.
[23] have published an extensive comparison of several
domain splitting algorithms and derived several Bench-
mark data sets used for the evaluation. Specifically, the
Benchmark_2 data set was chosen with several points
in mind: a) the PDB has a heavy bias towards single
domain proteins - this data set was chosen to avoid this
and to reflect the true distribution in the genome; b)
only chains where SCOP, CATH and the authors of the
X-ray or NMR structure agree on the number of
domains were included; and c) at least one domain in
each chain had to represent a unique CATH Topology
class in the data set for that chain to be included,
ensuring a diverse set of structures. This data set does
not include genetic domains - that is, all domains are
contained within a single protein chain. Though not
entirely clear, it appears domain boundary locations
were taken from CATH in this data set. A stricter set
was also created by the same authors, Benchmark_3,
which further removed those chains where domain
boundaries differed between SCOP and CATH. The
Benchmark sets thus represent an unbiased set of domains
which are fairly unambiguous in definition, allowing
them to be used to compare different domain assignment
methods without worrying about the subjectivity some-
times involved in domain assignment. Only half the
Benchmark_2 and Benchmark_3 data sets are made avail-
able for download for a total of 156 and 135 chains,
respectively.
Additionally, a second much larger data set,

ASTRAL30, was used. This is a non-redundant set of
SCOP domains with no more than 30% sequence iden-
tity between any two domains. The entire chain, for all
chains with at least one domain in the ASTRAL30 set,
was included for the purposes of this work. For this
data set, when SCOP and CATH disagreed on domain
assignment, SCOP was chosen as the ‘correct’ one except
where otherwise noted. This set is heavily biased, with
75% of the 7076 chains having a single domain.
In this work, if an assignment had a different num-

ber of domains than the value in the test set, it was
considered incorrect. When the number of domains
matched, a procedure similar to that described in
Holland et al. [23] was used to determine correctness.
Briefly, all possible permutations mapping domains from
the assignment to those in the test set assignment were
computed, and in each case, the overlap computed. Over-
lap is simply the number of residues assigned to the
same domain number in the assignment and in the test
set, divided by the total number of residues. The per-
mutation producing the highest overlap is chosen as
the correct mapping. Unless otherwise stated, an over-
lap of 75% or higher was required for an assignment to
be considered correct.
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