177 research outputs found

    Glutamine Phosphoribosylpyrophosphate Amidotransferase-independent Phosphoribosyl Amine Synthesis from Ribose 5-Phosphate and Glutamine or Asparagine

    Get PDF
    Phosphoribosylamine (PRA) is the first intermediate in the common pathway to purines and thiamine and is generated in bacteria by glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase (EC 2.4.2.14) from PRPP and glutamine. Genetic data have indicated that multiple, non-PRPP amidotransferase mechanisms exist to generate PRA sufficient for thiamine but not purine synthesis. Here we describe the purification and identification of an activity (present in both Escherichia coli and Salmonella enterica) that synthesizes PRA from ribose 5-phosphate and glutamine/asparagine. A purification resulting in greater than a 625-fold increase in specific activity identified 8 candidate proteins. Of the candidates, overexpression of AphA (EC 3.1.3.2), a periplasmic class B nonspecific acid phosphatase, significantly increased activity in partially purified extracts. Native purification of AphA to >95% homogeneity determined that the periplasmic L-asparaginase II, AnsB (EC 3.5.1.1), co-purified with AphA and was also necessary for PRA formation. The potential physiological relevance of AphA and AnsB in contributing to thiamine biosynthesis in vivo is discussed

    Inhibition of Fructose-1,6-bisphosphatase by Aminoimidazole Carboxamide Ribotide Prevents Growth of Salmonella enterica purH Mutants on Glycerol

    Get PDF
    The enzyme fructose-1,6-bisphosphatase (FBP) is key regulatory point in gluconeogenesis. Mutants of Salmonella enterica lacking purH accumulate 5-amino-4-imidazole carboxamide ribotide (AICAR) and are unable to utilize glycerol as sole carbon and energy sources. The work described here demonstrates this lack of growth is due to inhibition of FBP by AICAR. Mutant alleles of fbp that restore growth on glycerol encode proteins resistant to inhibition by AICAR and the allosteric regulator AMP. This is the first report of biochemical characterization of substitutions causing AMP resistance in a bacterial FBP. Inhibition of FBP activity by AICAR occurs at physiologically relevant concentrations and may represent a form of regulation of gluconeogenic flux in Salmonella enterica

    RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life

    Get PDF
    ABSTRACT Pyridoxal 5ā€²-phosphate (PLP) is a coenzyme synthesized by all forms of life. Relevant to the work reported here is the mechanism of the PLP-dependent threonine/serine dehydratases, which generate reactive enamine/imine intermediates that are converted to keto acids by members of the RidA family of enzymes. The RidA protein of Salmonella enterica serovar Typhimurium LT2 is the founding member of this broadly conserved family of proteins (formerly known as YjgF/YER057c/UK114). RidA proteins were recently shown to be enamine deaminases. Here we demonstrate the damaging potential of enamines in the absence of RidA proteins. Notably, S. enterica strains lacking RidA have decreased activity of the PLP-dependent transaminase B enzyme IlvE, an enzyme involved in branched-chain amino acid biosynthesis. We reconstituted the threonine/serine dehydratase (IlvA)-dependent inhibition of IlvE in vitro, show that the in vitro system reflects the mechanism of RidA function in vivo, and show that IlvE inhibition is prevented by RidA proteins from all domains of life. We conclude that 2-aminoacrylate (2AA) inhibition represents a new type of metabolic damage, and this finding provides an important physiological context for the role of the ubiquitous RidA family of enamine deaminases in preventing damage by 2AA. IMPORTANCE External stresses that disrupt metabolic components can perturb cellular functions and affect growth. A similar consequence is expected if endogenously generated metabolites are reactive and persist in the cellular environment. Here we show that the metabolic intermediate 2-aminoacrylate (2AA) causes significant cellular damage if allowed to accumulate aberrantly. Furthermore, we show that the widely conserved protein RidA prevents this accumulation by facilitating conversion of 2AA to a stable metabolite. This work demonstrates that the reactive metabolite 2AA, previously considered innocuous in the cell due to a short half-life in aqueous solution, can survive in the cellular environment long enough to cause damage. This work provides insights into the roles and persistence of reactive metabolites in vivo and shows that the RidA family of proteins is able to prevent damage caused by a reactive intermediate that is created as a consequence of PLP-dependent chemistry

    Crystal Structure of an Aminoimidazole Riboside Kinase from Salmonella enterica Implications for the Evolution of the Ribokinase Superfamily

    Get PDF
    AbstractThe crystal structures of a Salmonella enterica aminoimidazole riboside (AIRs) kinase, its complex with the substrate AIRs, and its complex with AIRs and an ATP analog were determined at 2.6 ƅ, 2.9 ƅ, and 2.7 ƅ, respectively. The product of the Salmonella-specific gene stm4066, AIRs kinase, is a homodimer with one active site per monomer. The core structure, consisting of an eight-stranded Ī² sheet flanked by eight Ī± helices, indicates that AIRs kinase is a member of the ribokinase superfamily. Unlike ribokinase and adenosine kinase in this superfamily, AIRs kinase does not show significant conformational changes upon substrate binding. The active site is covered by a lid formed by residues 16ā€“28 and 86ā€“100. A comparison of the structure of AIRs kinase with other ribokinase superfamily members suggests that the active site lid and conformational changes that occur upon substrate binding may be advanced features in the evolution of the ribokinase superfamily

    Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family.

    Get PDF
    BackgroundIt is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.ResultsPhylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5'-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.ConclusionsLike the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5'-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious

    DadY (PA5303) is required for fitness of Pseudomonas aeruginosa when growth is dependent on alanine catabolism

    Get PDF
    Pseudomonas aeruginosa inhabits diverse environmental niches that can have varying nutrient composition. The ubiquity of this organism is facilitated by a metabolic strategy that preferentially utilizes low-energy, non-fermentable organic acids, such as amino acids, rather than the high-energy sugars preferred by many other microbes. The amino acid alanine is among the preferred substrates of P. aeruginosa. The dad locus encodes the constituents of the alanine catabolic pathway of P. aeruginosa. Physiological roles for DadR (AsnC-type transcriptional activator), DadX (alanine racemase), and DadA (D-amino acid dehydrogenase) have been defined in this pathway. An additional protein, PA5303, is encoded in the dad locus in P. aeruginosa. PA5303 is a member of the ubiquitous Rid protein superfamily and is designated DadY based on the data presented herein. Despite its conservation in numerous Pseudomonas species and membership in the Rid superfamily, no physiological function has been assigned to DadY. In the present study, we demonstrate that DadA releases imino-alanine that can be deaminated by DadY in vitro. While DadY was not required for alanine catabolism in monoculture, dadY mutants had a dramatic fitness defect in competition with wild-type P. aeruginosa when alanine served as the sole carbon or nitrogen source. The data presented herein support a model in which DadY facilitates flux through the alanine catabolic pathway by removing the imine intermediate generated by DadA. Functional characterization of DadY contributes to our understanding of the role of the broadly conserved Rid family members

    Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle

    Get PDF
    The Quiet Supersonic Flights 2018 (QSF18) Program was designed to develop tools and methods for demonstration of overland supersonic flight with an acceptable sonic boom, and collect a large dataset of responses from a representative sample of the population. Phase 1 provided the basis for a low amplitude sonic boom testing in six different climate regions that will enable international regulatory agencies to draft a noise-based standard for certifying civilian supersonic overland flight. Phase 2 successfully executed a large scale test in Galveston, Texas, developed well documented data sets, calculated dose response relationships, yielded lessons, and identified future risk reduction activities

    Crummer/Suntrust Portfolio: Analysis and Recommendations [2008]

    Get PDF
    Unfavorable economic conditions have prompted the investment team to meet a short-term goal: preserve the value of the portfolio by reducing overall risk. A top down analysis of the current portfolio resulted in recommendations to change the portfolio by eliminating funds, investing in long term government bonds, TIPS and large cap value type securities. Allocations of securities was performed by either overweighting or underweighting a particular sector, depending on its historical and expected return during a recession. Individual securities were analyzed by our sector analystsand recommendations of hold, buy or sell were made. The outcome.... a robust portfolio, that will preserve its value during the recession by reducing its overall risk by 25%

    Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle

    Get PDF
    The Quiet Supersonic Flights 2018 (QSF18) Program was designed to develop tools and methods for demonstration of overland supersonic flight with an acceptable sonic boom, and collect a large dataset of responses from a representative sample of the population. Phase 1 provided the basis for a low amplitude sonic boom testing in six different climate regions that will enable international regulatory agencies to draft a noise-based standard for certifying civilian supersonic overland flight. Phase 2 successfully executed a large scale test in Galveston, Texas, developed well documented data sets, calculated dose response relationships, yielded lessons, and identified future risk reduction activities
    • ā€¦
    corecore