31 research outputs found
Children’s particulate matter exposure characterization as part of the new hampshire birth cohort study
As part of the New Hampshire Birth Cohort Study, children 3 to 5 years of age participated in a personal PM2.5 exposure study. This paper characterizes the personal PM2.5 exposure and protocol compliance measured with a wearable sensor. The MicroPEM™ collected personal continuous and integrated measures of PM2.5 exposure and compliance data on 272 children. PM2.5, black carbon (BC), and brown carbon tobacco smoke (BrC-ETS) exposure was measured from the filters. We per-formed a multivariate analysis of woodstove presence and other factors that influenced PM2.5, BC, and BrC exposures. We collected valid exposure data from 258 of the 272 participants (95%). Children wore the MicroPEM for an average of 46% of the 72-h period, and over 80% for a 2-day, 1-night period (with sleep hours counted as non-compliance for this study). Elevated PM2.5 exposures oc-curred in the morning, evening, and overnight. Median PM2.5, BC, and BrC-ETS concentrations were 8.1 μg/m3, 3.6 μg/m3, and 2.4 μg/m3. The combined BC and BrC-ETS mass comprised 72% of the PM2.5. Woodstove presence, hours used per day, and the primary heating source were associated with the children’s PM2.5 exposure and air filters were associated with reduced PM2.5 concentrations. Our findings suggest that woodstove smoke contributed significantly to this cohort’s PM2.5 expo-sure. The high sample validity and compliance rate demonstrated that the MicroPEM can be worn by young children in epidemiologic studies to measure their PM2.5 exposure, inform interventions to reduce the exposures, and improve children’s health
Effects of a refugee elective on medical student perceptions
<p>Abstract</p> <p>Background</p> <p>There are growing numbers of refugees throughout the world. Refugee health is a relatively unstudied and rarely taught component of medical education. In response to this need, a Refugee Health Elective was begun. Medical student perceptions toward cultural aspects of medicine and refugee health before and after participation in the elective were measured.</p> <p>Methods</p> <p>Preliminary questionnaires were given to all preclinical students at the academic year commencement with follow-up questionnaires at the refugee elective's conclusion. Both questionnaires examined students' comfort in interacting with patients and familiarity with refugee medical issues, alternative medical practices, and social hindrances to medical care. The preliminary answers served as a control and follow-up questionnaire data were separated into participant/non-participant categories. All preclinical medical students at two Midwestern medical schools were provided the opportunity to participate in the Refugee Health Elective and surveys. The 3 data groups were compared using unadjusted and adjusted analysis techniques with the Kruskall-Wallis, Bonferroni and ANCOVA adjustment. P-values < 0.05 were considered significant.</p> <p>Results</p> <p>408 and 403 students filled out the preliminary and follow-up questionnaires, respectfully, 42 of whom participated in the elective. Students considering themselves minorities or multilingual were more likely to participate. Elective participants were more likely to be able to recognize the medical/mental health issues common to refugees, to feel comfortable interacting with foreign-born patients, and to identify cultural differences in understanding medical/mental health conditions, after adjusting for minority or multilingual status.</p> <p>Conclusion</p> <p>As medical schools integrate a more multicultural curriculum, a Refugee Health Elective for preclinical students can enhance awareness and promote change in attitude toward medical/mental health issues common to refugees. This elective format offers tangible and effective avenues for these topics to be addressed.</p
Capabilities, Performance, and Status of the SOFIA Science Instrument Suite
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 540 m imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60240 m, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.31.1 m imager, developed at Lowell Observatory. FLITECAM is a 15 m wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42210 m integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 528 m high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50240 m imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011
HAWC+/SOFIA Multiwavelength Polarimetric Observations of OMC-1
We report new polarimetric and photometric maps of the massive star-forming region OMC-1 using the HAWC+ instrument on the Stratospheric Observatory for Infrared Astronomy. We present continuum polarimetric and photometric measurements of this region at 53, 89, 154, and 214 μm at angular resolutions of 5'', 8'', 14'', and 19'' for the four bands, respectively. The photometric maps enable the computation of improved spectral energy distributions for the region. We find that at the longer wavelengths, the inferred magnetic field configuration matches the "hourglass" configuration seen in previous studies, indicating magnetically regulated star formation. The field morphology differs at the shorter wavelengths. The magnetic field inferred at these wavelengths traces the bipolar structure of the explosive Becklin–Neugebauer/Kleinman–Low outflow emerging from OMC-1 behind the Orion Nebula. Using statistical methods to estimate the field strength in the region, we find that the explosion dominates the magnetic field near the center of the feature. Farther out, the magnetic field is close to energetic equilibrium with the ejecta and may be providing confinement to the explosion. The correlation between polarization fraction and the local polarization angle dispersion indicates that the depolarization as a function of unpolarized intensity is a result of intrinsic field geometry as opposed to decreases in grain alignment efficiency in denser regions
Evaluation of the bacterial ocular surface microbiome in clinically normal horses before and after treatment with topical neomycin-polymyxin-bacitracin.
Next generation sequencing (NGS) studies have demonstrated a rich and diverse ocular surface-associated microbiota in people that was previously undetected by traditional culture-based methods. The ocular surface microbiome of horses has yet to be investigated using NGS techniques. This study aimed to determine the bacterial composition of the ocular surface microbiome in healthy horses, and to identify whether there are microbial community changes over time and following topical antibiotic use. One eye of 12 horses was treated 3 times daily for 1 week with neomycin-polymyxin-bacitracin ophthalmic ointment. Contralateral eyes served as untreated controls. The inferior conjunctival fornix of both eyes was sampled at baseline prior to initiating treatment (day 0), after 1 week of treatment (day 7), and 4 weeks after concluding treatment (day 35). Genomic DNA was extracted from ocular surface swabs and sequenced using primers that target the V4 region of bacterial 16S rRNA. At baseline, the most abundant phyla identified were Proteobacteria (46.1%), Firmicutes (24.6%), Actinobacteria (12.6%), and Bacteroidetes (11.2%). The most abundant families included Pasteurellaceae (13.7%), Sphingomonadaceae (7.9%), an unclassified Order of Cardiobacteriales (7.7%), and Moraxellaceae (4.8%). Alpha and beta diversity measurements were unchanged in both treatment and control eyes over time. Overall, the major bacterial taxa on the equine ocular surface remained stable over time and following topical antibiotic therapy
Genome-wide association mapping of floral traits in cultivated sunflower (Helianthus annuus)
Floral morphology and pigmentation are both charismatic and economically relevant traits associated with cultivated sunflower (Helianthus annuus L.). Recent work has linked floral morphology and pigmentation to pollinator efficiency and seed yield. Understanding the genetic architecture of such traits is essential for crop improvement, and gives insight into the role of genetic constraints in shaping floral diversity. A diversity panel of 288 sunflower genotypes was phenotyped for a variety of morphological, phenological, and color traits in both a greenhouse and a field setting. Association mapping was performed using 5788 SNP markers using a mixed linear model approach. Several dozen markers across 10 linkage groups were significantly associated with variation in morphological and color trait variation. Substantial trait plasticity was observed between greenhouse and field phenotyping, and associations differed between environments. Color traits mapped more strongly than morphology in both settings, with markers together explaining 16% of petal carotenoid content in the greenhouse, and 17% and 24% of variation in disc anthocyanin presence in the field and greenhouse, respectively. Morphological traits like disc size mapped more strongly in the field, with markers together explaining up to 19% of disc size variation. Loci identified here through association mapping within cultivated germplasm differ from those identified through biparental crosses between modern cultivated sunflower and either its wild progenitor or domesticated landraces. Several loci lie within genomic regions involved in domestication. Differences between phenotype expression under greenhouse and field conditions highlight the importance of plasticity in determining floral morphology and pigmentation
DatasetS1_field_line_means
Line means for floral traits assessed in the field
DatasetS1_greenhouse_line_means
Line means for floral traits assessed in the greenhouse