937 research outputs found

    Conventional engine technology. Volume 3: Comparisons and future potential

    Get PDF
    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements

    Concept to standardize space vehicle piggyback experiment modules

    Get PDF
    Study investigates the use of spent launch vehicle stages and modules to support earth orbital operations and functions after successful completion of the primary mission. Emphasis is placed primarily on determination of those uses that afford the greatest utility with minimum possibility of degradation to the primary mission

    Experimental investigation and analysis of two sources of nozzle-thrust misalignment

    Get PDF
    Asymmetry of nozzle's throat produces oscillatory type net side-force axial profile. Using mean values of localized static pressure and Mach number, scaling laws for flat-plate supersonic flow over protrusion are applied to nozzle expansion cone irregularities to give approximate indication of perturbed-pressure profiles and induced side forces

    Automotive fuel economy and emissions program

    Get PDF
    Experimental data were generated to support an assessment of the relationship between automobile fuel economy and emissions control systems. Tests were made at both the engine and vehicle levels. Detailed investigations were made on cold-start emissions devices, exhaust gas recirculation systems, and air injection reactor systems. Based on the results of engine tests, an alternative emission control system and modified control strategy were implemented and tested in the vehicle. With the same fuel economy and NOx emissions as the stock vehicle, the modified vehicle reduced HC and CO emissions by about 20 percent. By removing the NOx emissions constraint, the modified vehicle demonstrated about 12 percent better fuel economy than the stock vehicle

    The Otto-engine-equivalent vehicle concept

    Get PDF
    A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic

    Cold-flow experimental investigation and analysis of two sources of nozzle thrust misalignment

    Get PDF
    Cold flow investigation and analysis of two nozzle thrust misalignmen

    Evaluation of FIDC system

    Get PDF
    A fuel vapor injector/igniter system was evaluated for its effect on automobile engine performance, fuel economy, and exhaust emissions. Improved fuel economy and emissions, found during the single cylinder tests were not realized with a multicylinder engine. Multicylinder engine tests were conducted to compare the system with both a stock and modified stock configuration. A comparison of cylinder-to-cylinder equivalence ratio distribution was also obtained from the multicylinder engine tests. The multicylinder engine was installed in a vehicle was tested on a chassis dynamometer to compare the system with stock and modified stock configurations. The fuel vapor injector/igniter system (FIDC) configuration demonstrated approximately five percent improved fuel economy over the stock configuration, but the modified stock configuration demonstrated approximately twelve percent improved fuel economy. The hydrocarbon emissions were approximately two-hundred-thirty percent higher with the FIDC system than with the stock configuration. Both the FIDC system and the modified stock configuration adversely affected driveability. The FIDC system demonstrated a modest fuel savings, but with the penalty of increased emissions, and loss of driveability

    Is scale-up worth it? Challenges in economic analysis of diagnostic tests for tuberculosis.

    Get PDF
    David Dowdy and colleagues discuss the complexities of costing new TB diagnostic tests, including GeneXpert, and argue that flexible analytic tools are needed for decision-makers to adapt large-sample cost-effectiveness data to local conditions

    Satellite/spacecraft propulsion

    Get PDF
    Propulsion system performance has high leverage for many future missions because of large propellant mass requirements. Relatively small performance improvements can translate into large increases in payload and science return. Contamination control becomes more important as science instruments become more sensitive. This places more emphasis on exhaust plume contamination control. The need for reliable operation and long life places increased importance on health monitoring and control of spacecraft propulsion systems. The need for accurate spacecraft pointing and control increases the need for small impulse-bit thrusters. This presentation is represented by viewgraphs
    • …
    corecore