25 research outputs found

    Effect of d-cycloserine on fear extinction training in adults with social anxiety disorder

    Get PDF
    © 2019 Hofmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Preclinical and clinical data have shown that D-cycloserine (DCS), a partial agonist at the N-methyl-d-aspartate receptor complex, augments the retention of fear extinction in animals and the therapeutic learning from exposure therapy in humans. However, studies with nonclinical human samples in de novo fear conditioning paradigms have demonstrated minimal to no benefit of DCS. The aim of this study was to evaluate the effects of DCS on the retention of extinction learning following de novo fear conditioning in a clinical sample. Eighty-one patients with social anxiety disorder were recruited and underwent a previously validated de novo fear conditioning and extinction paradigm over the course of three days. Of those, only 43 (53%) provided analyzable data. During conditioning on Day 1, participants viewed images of differently colored lamps, two of which were followed by with electric shock (CS+) and a third which was not (CS-). On Day 2, participants were randomly assigned to receive either 50 mg DCS or placebo, administered in a double-blind manner 1 hour prior to extinction training with a single CS+ in a distinct context. Day 3 consisted of tests of extinction recall and renewal. The primary outcome was skin conductance response to conditioned stimuli, and shock expectancy ratings were examined as a secondary outcome. Results showed greater skin conductance and expectancy ratings in response to the CS+ compared to CS- at the end of conditioning. As expected, this difference was no longer present at the end of extinction training, but returned at early recall and renewal phases on Day 3, showing evidence of return of fear. In contrast to hypotheses, DCS had no moderating influence on skin conductance response or expectancy of shock during recall or renewal phases. We did not find evidence of an effect of DCS on the retention of extinction learning in humans in this fear conditioning and extinction paradigm

    Can Medication Free, Treatment-Resistant, Depressed Patients Who Initially Respond to TMS Be Maintained Off Medications? A Prospective, 12-Month Multisite Randomized Pilot Study

    Get PDF
    AbstractBackgroundRepetitive transcranial magnetic stimulation (TMS) is efficacious for acute treatment of resistant major depressive disorder (MDD), but there is little information on maintenance TMS after acute response.Objective/hypothesisThis pilot feasibility study investigated 12-month outcomes comparing two maintenance TMS approaches – a scheduled, single TMS session delivered monthly (SCH) vs. observation only (OBS).MethodsAntidepressant-free patients with unipolar, non-psychotic, treatment-resistant MDD participated in a randomized, open-label, multisite trial. Patients meeting protocol-defined criteria for improvement after six weeks of acute TMS were randomized to SCH or OBS regimens. TMS reintroduction was available for symptomatic worsening; all patients remained antidepressant-free during the trial.ResultsSixty-seven patients enrolled in the acute phase, and 49 (73%) met randomization criteria. Groups were matched, although more patients in the SCH group had failed ≥2 antidepressants (p = .035). There were no significant group differences on any outcome measure. SCH patients had nonsignificantly longer time to first TMS reintroduction, 91 ± 66 days, vs. OBS, 77 ± 52 days; OBS patients were nonsignificantly more likely to need reintroduction (odds ratio = 1.21, 95% CI .38–3.89). Reintroduction lasted 14.3 ± 17.8 days (SCH) and 16.9 ± 18.9 days (OBS); 14/18 (78%) SCH and 17/27 (63%) OBS responded to reintroduction. Sixteen patients (32.7%) completed all 53 weeks of the study.ConclusionsMaintaining treatment-resistant depressed patients off medications with periodic TMS appears feasible in some cases. There was no statistical advantage of SCH vs. OBS, although SCH was associated with a nonsignificantly longer time to relapse. Those who initially respond to TMS have a strong chance of re-responding if relapse occurs

    The Importance of pH in Regulating the Function of the Fasciola hepatica Cathepsin L1 Cysteine Protease

    Get PDF
    The helminth parasite Fasciola hepatica secretes cathepsin L cysteine proteases to invade its host, migrate through tissues and digest haemoglobin, its main source of amino acids. Here we investigated the importance of pH in regulating the activity and functions of the major cathepsin L protease FheCL1. The slightly acidic pH of the parasite gut facilitates the auto-catalytic activation of FheCL1 from its inactive proFheCL1 zymogen; this process was ∼40-fold faster at pH 4.5 than at pH 7.0. Active mature FheCL1 is very stable at acidic and neutral conditions (the enzyme retained ∼45% activity when incubated at 37°C and pH 4.5 for 10 days) and displayed a broad pH range for activity peptide substrates and the protein ovalbumin, peaking between pH 5.5 and pH 7.0. This pH profile likely reflects the need for FheCL1 to function both in the parasite gut and in the host tissues. FheCL1, however, could not cleave its natural substrate Hb in the pH range pH 5.5 and pH 7.0; digestion occurred only at pH≤4.5, which coincided with pH-induced dissociation of the Hb tetramer. Our studies indicate that the acidic pH of the parasite relaxes the Hb structure, making it susceptible to proteolysis by FheCL1. This process is enhanced by glutathione (GSH), the main reducing agent contained in red blood cells. Using mass spectrometry, we show that FheCL1 can degrade Hb to small peptides, predominantly of 4–14 residues, but cannot release free amino acids. Therefore, we suggest that Hb degradation is not completed in the gut lumen but that the resulting peptides are absorbed by the gut epithelial cells for further processing by intracellular di- and amino-peptidases to free amino acids that are distributed through the parasite tissue for protein anabolism

    The Experience of Free Banking.

    No full text

    Reactions to "Funding Online Services from the Materials Budget"

    Get PDF
    published or submitted for publicatio
    corecore