3,013 research outputs found

    A critique of full reserve banking

    Get PDF
    Proposals for full reserve banking have been put forward as a radical way of preventing further financial crises. They rest on the argument that crises are caused by excessive money supply growth brought about by inadequately controlled bank credit creation. Our aim is to provide a critique of the theoretical assumptions underlying the plans for full reserve banking. In particular some of the plans rely on the view that the money supply is a key causal variable and that it is feasible for central banks to identify and enforce an optimal quantity. Second, the plans all rely on an unsupported confidence in the efficiency of financial markets outside the centrally controlled banking system. Third, by removing profit-making opportunities from banks, the proposals may unduly tip the balance further in favour of shadow banking. Finally, as the case of 95% liquidity requirements on Kaupthing, Singer and Friedlander in the wake of the Great Financial Crash shows that modern financial engineering makes such policy-making difficult to execute. A Minskyan analysis rather emphasises the inherent instability of the financial system such that it is subject to systemic crises and the indeterminacy of demand for liquidity, while also emphasising the contribution prudent banking can make to financing economic activity and providing a safe money asset. While a return to a traditional separation of retail banking (regulated and supported by the central bank) from investment banking (regulated differently but not supported) would contribute to financial stability, it is argued that the full reserve banking proposals go too far

    Mechanism and function of drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor

    Get PDF
    The capa peptide receptor, capaR (CG14575), is a G-protein coupled receptor (GPCR) for the D. melanogaster capa neuropeptides, Drm-capa-1 and -2 (capa-1 and -2). To date, the capa peptide family constitutes the only known nitridergic peptides in insects, so the mechanisms and physiological function of ligand-receptor signalling of this peptide family are of interest. Capa peptide induces calcium signaling via capaR with EC50 values for capa-1 = 3.06 nM and capa-2 = 4.32 nM. capaR undergoes rapid desensitization, with internalization via a b-arrestin-2 mediated mechanism but is rapidly re-sensitized in the absence of capa-1. Drosophila capa peptides have a C-terminal -FPRXamide motif and insect-PRXamide peptides are evolutionarily related to vertebrate peptide neuromedinU (NMU). Potential agonist effects of human NMU-25 and the insect -PRLamides [Drosophila pyrokinins Drm-PK-1 (capa-3), Drm-PK-2 and hugin-gamma [hugg]] against capaR were investigated. NMU-25, but not hugg nor Drm-PK-2, increases intracellular calcium ([Ca2+]i) levels via capaR. In vivo, NMU-25 increases [Ca2+]i and fluid transport by the Drosophila Malpighian (renal) tubule. Ectopic expression of human NMU receptor 2 in tubules of transgenic flies results in increased [Ca2+]i and fluid transport. Finally, anti-porcine NMU-8 staining of larval CNS shows that the most highly immunoreactive cells are capa-producing neurons. These structural and functional data suggest that vertebrate NMU is a putative functional homolog of Drm-capa-1 and -2. capaR is almost exclusively expressed in tubule principal cells; cell-specific targeted capaR RNAi significantly reduces capa-1 stimulated [Ca2+]i and fluid transport. Adult capaR RNAi transgenic flies also display resistance to desiccation. Thus, capaR acts in the key fluid-transporting tissue to regulate responses to desiccation stress in the fly

    Strong laws of large numbers for sub-linear expectations

    Full text link
    We investigate three kinds of strong laws of large numbers for capacities with a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov's strong law of large numbers to the case where probability measures are no longer additive. An important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.Comment: 10 page

    Crowdboard: Augmenting in-person idea generation with real-time crowds

    Get PDF
    Online crowds can help infuse creativity into the design process, but traditional strategies for leveraging them, such as large-scale ideation platforms, require time and organizational effort in order to obtain results. We propose a new method for crowd-based ideation that simplifies the process by having smaller crowds join in-person ideators during synchronous creative sessions. Our system Crowdboard allows online crowds to provide real-time creative input during early-stage design activities, such as brainstorming or concept mapping. The system enables in-person ideators to develop ideas on a physical or digital whiteboard which is augmented with real-time creative input from online participants who see and hear a live broadcast of the meeting. We validate Crowdboard via two user studies in which dyads of in-person ideators brainstormed with the help of crowd ideators. Our studies suggest that Crowdboard can effectively enhance ongoing brainstorming sessions, but also revealed key challenges for how to better facilitate interactions among in-person and crowd ideator

    Theory of High-Tc Superconductivity: Accurate Predictions of Tc

    Full text link
    The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression kBTc0=e2Λ/ℓζk_BT_c0 = e^2 \Lambda / \ell\zeta; ℓ\ell is the spacing between interacting charges within the layers, \zeta is the distance between interacting layers and \Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/\zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.Comment: 7 pages 5 references, 6 figures 1 tabl

    The Causal Structure of Emotions in Aristotle: Hylomorphism, Causal Interaction between Mind and Body, and Intentionality

    Get PDF
    Recently, a strong hylomorphic reading of Aristotelian emotions has been put forward, one that allegedly eliminates the problem of causal interaction between soul and body. Taking the presentation of emotions in de An. I 1 as a starting point and basic thread, but relying also on the discussion of Rh. II, I will argue that this reading only takes into account two of the four causes of emotions, and that, if all four of them are included into the picture, then a causal interaction of mind and body remains within Aristotelian emotions, independent of how strongly their hylomorphism is understood. Beyond the discussion with this recent reading, the analysis proposed of the fourfold causal structure of emotions is also intended as a hermeneutical starting point for a comprehensive analysis of particular emotions in Aristotle. Through the different causes Aristotle seems to account for many aspects of the complex phenomenon of emotion, including its physiological causes, its mental causes, and its intentional object

    The Athenian Calendar of Sacrifices: A New Fragment from the Athenian Agora

    Get PDF
    Presented here is the editio princeps of a new fragment of the late-5th-century b.c. Athenian calendar of sacrifices. The fragment, Agora 17577, was discovered during excavations conducted in the Athenian Agora by the American School of Classical Studies. Inscribed on both faces (Face A: 403-399 b.c., Face B: 410-404 b.c.), it is associated with, but does not join, the group of fragments of Athenian legal inscriptions often referred to as the Law Code of Nikomachos. The text provides important additional evidence for the form of the calendar and the manner of its publication, and casts new light on broader issues of Athenian cult and topography

    The Strange Quark Contribution to the Proton's Magnetic Moment

    Get PDF
    We report a new determination of the strange quark contribution to the proton's magnetic form factor at a four-momentum transfer Q2 = 0.1 (GeV/c)^2 from parity-violating e-p elastic scattering. The result uses a revised analysis of data from the SAMPLE experiment which was carried out at the MIT-Bates Laboratory. The data are combined with a calculation of the proton's axial form factor GAe to determine the strange form factor GMs(Q2=0.1)=0.37 +- 0.20 +- 0.26 +- 0.07. The extrapolation of GMs to its Q2=0 limit and comparison with calculations is also discussed.Comment: 6 pages, 1 figure, submitted to Phys. Lett.
    • …
    corecore