20 research outputs found

    Ancient origin of the biosynthesis of lignin precursors

    Get PDF
    BACKGROUND: Lignin plays an important role in plant structural support and water transport, and is considered one of the hallmarks of land plants. The recent discovery of lignin or its precursors in various algae has raised questions on the evolution of its biosynthetic pathway, which could be much more ancient than previously thought. To determine the taxonomic distribution of the lignin biosynthesis genes, we screened all publicly available genomes of algae and their closest non-photosynthetic relatives, as well as representative land plants. We also performed phylogenetic analysis of these genes to decipher the evolution and origin(s) of lignin biosynthesis. RESULTS: Enzymes involved in making p-coumaryl alcohol, the simplest lignin monomer, are found in a variety of photosynthetic eukaryotes, including diatoms, dinoflagellates, haptophytes, cryptophytes as well as green and red algae. Phylogenetic analysis of these enzymes suggests that they are ancient and spread to some secondarily photosynthetic lineages when they acquired red and/or green algal endosymbionts. In some cases, one or more of these enzymes was likely acquired through lateral gene transfer (LGT) from bacteria. CONCLUSIONS: Genes associated with p-coumaryl alcohol biosynthesis are likely to have evolved long before the transition of photosynthetic eukaryotes to land. The original function of this lignin precursor is therefore unlikely to have been related to water transport. We suggest that it participates in the biological defense of some unicellular and multicellular algae. REVIEWERS: This article was reviewed by Mark Ragan, Uri Gophna, Philippe Deschamps

    Offshore outsourcing: a dynamic, operation mode perspective

    Get PDF
    Based on a case study of the Danish company SimCorp and the development of its operations in Kiev, Ukraine, we analyse offshore outsourcing in a broader, longitudinal foreign operation mode context, and how it may contribute to mode change in the host country over a certain span of time. SimCorp had outsourced part of its software development work to two Ukrainian companies. The case study approach allowed us to explore the dynamic processes in depth. The study shows that involvement in the foreign market generates learning in various forms that provide a foundation for eventual mode development or change – beyond outsourcing specific learning. At the same time, restrictions on 3rd parties’, that is, independent vendors’ access to confidential client data, as well as protection of specific investments in human assets, may eventually become a driver for mode change, as in the SimCorp case, to ensure more effective control of the foreign operation. Finally, the case study shows how outsourcing can be used proactively as a springboard to deeper and changed operation mode activities in a foreign market

    Π’ΠΏΠ»ΠΈΠ² Π±Ρ–ΠΏΡ€ΠΎΠ»ΠΎΠ»Ρƒ Π½Π° Тирнокислотний спСктр Π»Ρ–ΠΏΡ–Π΄Ρ–Π² Π½ΠΈΡ€ΠΎΠΊ Ρƒ Ρ‰ΡƒΡ€Ρ–Π² Π·Ρ– ΡΠΏΠΎΠ½Ρ‚Π°Π½Π½ΠΎΡŽ Π°Ρ€Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡŽ Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·Ρ–Ρ”ΡŽ

    No full text
    The effect of biprolol (bisoprolol) on the fatty acid lipid spectrum of the kidneys in hypertensive rats during 1 and 3 months has been studied. It has been established that only after 3 months of therapy a normalization of the fatty acid content of lipids in the rat kidney tissues at a biprolol dose of 20 mg per day is observed.Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС Π±ΠΈΠΏΡ€ΠΎΠ»ΠΎΠ»Π° (бисопролола) Π½Π° Тирнокислотний состав Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² ΠΏΠΎΡ‡Π΅ΠΊ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½Ρ‹Ρ… крыс Π½Π° протяТСнии ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚Ρ€Ρ‘Ρ… мСсяцСв. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ послС Ρ‚Ρ€Ρ‘Ρ… мСсяцСв лСчСния Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ нормализация Тирнокислотного состава Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΏΠΎΡ‡Π΅ΠΊ ΠΏΡ€ΠΈ Π΄ΠΎΠ·Π΅ Π±ΠΈΠΏΡ€ΠΎΠ»ΠΎΠ»Π° 20 ΠΌΠ³/сутки.ДослідТували Π²ΠΏΠ»ΠΈΠ² Π±Ρ–ΠΏΡ€ΠΎΠ»ΠΎΠ»Ρƒ (бісопрололу) Π½Π° Тирнокислотний склад Π»Ρ–ΠΏΡ–Π΄Ρ–Π² Π½ΠΈΡ€ΠΎΠΊ Ρƒ Ρ‰ΡƒΡ€Ρ–Π² Π·Ρ– ΡΠΏΠΎΠ½Ρ‚Π°Π½Π½ΠΎΡŽ Π°Ρ€Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡŽ Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·Ρ–Ρ”ΡŽ протягом ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ– Ρ‚Ρ€ΡŒΠΎΡ… місяців. ВстановлСно, Ρ‰ΠΎ після Ρ‚Ρ€ΡŒΠΎΡ… місяців лікування ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ нормалізація Тирнокислотного складу Π»Ρ–ΠΏΡ–Π΄Ρ–Π² Ρ‚ΠΊΠ°Π½ΠΈΠ½ Π½ΠΈΡ€ΠΎΠΊ ΠΏΡ€ΠΈ Π΄ΠΎΠ·Ρ– Π±Ρ–ΠΏΡ€ΠΎΠ»ΠΎΠ»Ρƒ 20 ΠΌΠ³/Π΄ΠΎΠ±Ρƒ

    The spectrum of fatty acids of lipids myocardium when combined use nifedipine with angiolin and elgatsin in rats with hypertension

    No full text
    Π£ Тирнокислотному спСктрі Π»Ρ–ΠΏΡ–Π΄Ρ–Π² ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Π° Ρ‰ΡƒΡ€Ρ–Π² Π· Π°Ρ€Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡŽ Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·Ρ–Ρ”ΡŽ ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ вмісту Π°Ρ€Π°Ρ…Ρ–Π΄ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Ρ– суми полінСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот Ρ‚Π° одночасним змСншСнням вмісту Π² ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Ρ– ΠΏΠ°Π»ΡŒΠΌΡ–Ρ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— ΠΆΠΈΡ€Π½ΠΎΡ— кислоти. ΠœΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Ρ‡Π½Ρ– ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈ Π°Π½Π³Ρ–ΠΎΠ»Ρ–Π½ Ρ‚Π° Π΅Π»Π³Π°Ρ†ΠΈΠ½ ΠΏΡ€ΠΈ застосуванні Ρƒ Ρ‰ΡƒΡ€Ρ–Π² Π· Π°Ρ€Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡŽ Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·Ρ–Ρ”ΡŽ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° відновлСння вмісту ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² Ρ‚ΠΊΠ°Π½ΠΈΠ½Π°Ρ… ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Ρƒ. НіфСдипін ΠΏΡ€ΠΈ сумісному застосуванні Π· Π°Π½Π³Ρ–ΠΎΠ»Ρ–Π½ΠΎΠΌ Ρ‚Π° Π΅Π»Π³Π°Ρ†ΠΈΠ½ΠΎΠΌ Π½ΠΎΡ€ΠΌΠ°Π»Ρ–Π·ΡƒΡ” ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌ Π΅ΡΡΠ΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΈΡ… ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² ΠΌΡ–ΠΎΠΊΠ°Ρ€Π΄Ρ– Π³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΈΡ… Ρ‰ΡƒΡ€Ρ–Π²; Тирнокислотном спСктрС Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° крыс с Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ΅ΠΉ увСличиваСтся содСрТаниС Π°Ρ€Π°Ρ…ΠΈΠ΄ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты ΠΈ суммы полинСнасыщСнных ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ содСрТания Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅ ΠΏΠ°Π»ΡŒΠΌΠΈΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислоты. ΠœΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ Π°Π½Π³ΠΈΠΎΠ»ΠΈΠ½ ΠΈ элгацин Ρƒ крыс с Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ΅ΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° восстановлСниС содСрТания ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅. НифСдипин ΠΏΡ€ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ с Π°Π½Π³ΠΈΠΎΠ»ΠΈΠ½ΠΎΠΌ ΠΈ элгацином Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΡƒΡŽΡ‚ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΡΡΡΠ΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот Π² ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π΅ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½Ρ‹Ρ… крыс; Arterial hypertension is one of the urgent problems of modern medicine and pharmacology and extremely common in older age groups. Predictors of progression and complicated course of hypertension is myocardial remodeling – one of the pathogenetic components of homeostasis regulation in conditions of chronic high blood pressure. In the pathogenesis of arterial hypertension is essential given the role of impaired lipid metabolism and oxidative processes in plasma lipid and fatty acids of vascular cell membranes and myocardium. Metabolic disturbances of saturated and unsaturated fatty acids have an adverse effect on metabolic processes: violation of energy metabolism, structure and transport function of cell membranes. Phospholipid violation is primarily caused by defect of their transport into cells and lipid peroxidation. Complications accompanying AH relate not only to heart as the primary target organ for AH, but also other vital organs such as kidneys. One of markers for lesion expression in AH and efficiency of antihypertensive drugs in this pathology include fatty acid content in target organs. Studying the ratio of saturated fatty acids (SFA) and unsaturated fatty acids (USFA) is interesting in terms of their availability in clinical examinations of patients. The objective of this study was to carry out a comparative analysis of changes in ratios of saturated and unsaturated fatty acids in the heart of WKY line rats and ISIAH line rats with arterial hypertension to serve as a control for assessing efficiency of pharmacological preparations. The aim of the study was to conduct a comparative analysis of changes in fatty acid (FA) in heart and in NISAH rat to clarify the mechanisms of cardiovascular disease and hypertension, and pharmacocorrection of hypertension with. The study was conducted on 63 rats with hypertension (ISIAH rats) and normotensive rats (WKY rats). Blood pressure was carried out using a plethysmograph on the tail artery of rats and recorded in millimeters of mercury (mmHg). Fatty-acid content of lipids in the heart, kidneys of experimental rats was analyzed by using gas-liquid chromatography. 9 most informative fatty acids (FA) were identified: Π‘ 14:0 myristinic acid, Π‘ 15:0 pentadecoic acid, Π‘ 16:0 palmitic acid, Π‘ 17:0 margaric acid, Π‘ 18:0 stearic acid, Π‘ 18:1 oleic acid, Π‘ 18:2 linoleic acid, Π‘ 18:3 linolenic acid, Π‘ 20:4 arachidonic acid. The results were processed by variation statistics method with the use of Student t-test and correlation analysis. In the spectrum of the fatty acid of myocardium of rats with hypertension increases the content of arachidonic acid and the sum of polyunsaturated fatty acids with a simultaneous decrease in the amount of the palmitic acid in the myocardium and decrease of the stearic and oleic acids and increases level of the linoleic acid. Metabolic drugs Angiolin and Elgatsin when administrated to the rats with arterial hypertension positively influence to the restoration of the fatty acid content in the myocardium. Nifedipine while the use of Angiolin and Elgatsin normalize metabolic disorder of essential fatty acids in the myocardium of hypertensive rats

    Microbiome changes under bile tract obstruction due to progressive growth of pancreas tumour

    No full text
    Π£ статті прСдставлСний огляд Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½Π΅Π½Π½Ρ сучасних знань ΠΏΡ€ΠΎ ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠΌ, Π·ΠΎΠΊΡ€Π΅ΠΌΠ°, ΠΉΠΎΠ³ΠΎ Π·ΠΌΡ–Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Ρ– ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ Ρ‚Π° наступних ускладнСннях. Π—Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ висновки, Ρ‰ΠΎ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ– Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–Ρ— Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° Ρ†Π΅ΠΉ процСс, Π°ΠΊΡ‚ΠΈΠ²Ρ–Π·ΡƒΡŽΡ‡ΠΈ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½Ρ– Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΈ Ρ‚Π° Π·Π±Π΅Ρ€Ρ–Π³Π°ΡŽΡ‡ΠΈ запалСння, асоційованС Ρ–Π· виникнСнням Ρ€Π°ΠΊΡƒ ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ. ΠŸΡ€ΠΈ обструкції ΠΏΡƒΡ…Π»ΠΈΠ½ΠΎΡŽ ΠΆΠΎΠ²Ρ‡Π½ΠΈΡ… ΡˆΠ»ΡΡ…Ρ–Π² виявлСно, Ρ‰ΠΎ Π½Π° ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌ ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡƒ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΆΠΎΠ²Ρ‡Π½ΠΈΡ… кислот, які Π²Π΅Π΄ΡƒΡ‚ΡŒ Π΄ΠΎ Π·ΠΌΡ–Π½ΠΈ сигналізування Ρ‡Π΅Ρ€Π΅Π· Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΈ ΠΆΠΎΠ²Ρ‡Π½ΠΈΡ… кислот, Ρ– Ρ‚Π°ΠΊΠΎΠΆ Ρ€Ρ–Π·Π½Ρ– Π·ΠΌΡ–Π½ΠΈ складу ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠΌΡƒ. ΠšΠ΅Ρ€ΡƒΠ²Π°Π½Π½Ρ ΠΊΠΈΡˆΠΊΠΎΠ²ΠΎΡ— ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈ Π·Π° допомогою ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π² дозволяє Π·ΠΌΡ–Π½ΠΈΡ‚ΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌ ΠΆΠΎΠ²Ρ‡Π½ΠΈΡ… кислот Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ FXR Ρ‚Π° GPBAR1 сигналізування. ДослідТСння ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‰ΠΎ обтурація ΠΆΠΎΠ²Ρ‡Π½ΠΈΡ… ΡˆΠ»ΡΡ…Ρ–Π², яка Π±Π»ΠΎΠΊΡƒΡ” надходТСння ΠΆΠΎΠ²Ρ‡Ρ– Π² ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊ Π²Π΅Π΄Π΅ Π΄ΠΎ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΎΠ³ΠΎ росту Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ Ρ– транслокації Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ Π΄ΠΎ Ρ‚ΠΎΠ½ΠΊΠΎΡ— кишки. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΠΈ Π·Π΄Π°Ρ‚Π½Ρ– діяти як ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ– Π°Π³Π΅Π½Ρ‚ΠΈ після інфікування ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‰ΠΎ ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Π° Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½Ρ–ΡΡ‚ΡŒ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° Π·Π½Π°Ρ‡Π½ΠΎ Π·Π½ΠΈΠΆΡƒΡ”Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ Ρ€Π°ΠΊΡƒ ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ Ρ– ця ΠΏΡƒΡ…Π»ΠΈΠ½Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡ”Ρ‚ΡŒΡΡ ΡƒΠ½Ρ–ΠΊΠ°Π»ΡŒΠ½ΠΈΠΌ ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΠΌ ΠΏΡ€ΠΎΡ„Ρ–Π»Π΅ΠΌ. Π—ΠΎΠΊΡ€Π΅ΠΌΠ°, ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– Π·ΠΌΡ–Π½ΠΈ ΠΏΡ€ΠΈ Ρ€Π°ΠΊΡƒ ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ²Π°Π»ΠΈΡΡŒ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½ΡΠΌ ΠΊΡ–Π»ΡŒΠΊΠΎΡ… прСдставників, Ρ‚Π°ΠΊΠΈΡ… як Veillonella, Klebsiella Ρ– Selenomonas, Ρ‚Π° LPS-ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡƒΡŽΡ‡ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‡ΠΈ Prevotella, Hallella Ρ‚Π° Enterobacter. Π—Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ, Ρ‰ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡƒΡŽΡ‚ΡŒ Π›ΠŸΠ‘, ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΡŽΡ‚ΡŒ Π²Π°ΠΆΠ»ΠΈΠ²Ρƒ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½Ρƒ Ρ€ΠΎΠ»ΡŒ дисбактСріозу Π² посСрСдництві Ρ…Ρ€ΠΎΠ½Ρ–Ρ‡Π½ΠΎΠ³ΠΎ запалСння. ОкислювальнС ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ, Π°ΠΊΡ‚ΠΈΠ²ΡƒΡŽΡ‡ΠΈ ΡˆΠ»ΡΡ… NF-kB, ΡΠΏΡ€ΠΈΡΡŽΡ‚ΡŒ синтСзу Ρ– сСкрСції ΠΏΡ€ΠΎΠ·Π°ΠΏΠ°Π»ΡŒΠ½ΠΈΡ… Ρ†ΠΈΡ‚ΠΎΠΊΡ–Π½Ρ–Π². Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, Ρ‚Ρ€ΠΈΠ²Π°Π»Π΅ Ρ…Ρ€ΠΎΠ½Ρ–Ρ‡Π½Π΅ запалСння Ρ‚Π° ΠΎΠΊΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½Ρ– ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Π±Π΅Ρ€ΡƒΡ‚ΡŒ ΡƒΡ‡Π°ΡΡ‚ΡŒ Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ€Π°ΠΊΡƒ ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ. Π’ΠΎΠΌΡƒ, Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ Ρ” ΠΏΠΎΡˆΡƒΠΊ Π½ΠΎΠ²ΠΈΡ… напрямків Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½Π° Π΄Π°Π½ΠΈΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΉ стан, Π² Ρ‚ΠΎΠΌΡƒ числі Ρ– ΡˆΠ»ΡΡ…ΠΎΠΌ використання ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π². Π‘Π°ΠΌΠ΅ Ρ†Ρ– ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈ Π·Π΄Π°Ρ‚Π½Ρ– Π·ΠΌΡ–Π½ΡŽΠ²Π°Ρ‚ΠΈ ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠΌ, (Ρ€Π΅)ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΡƒΡŽΡ‡ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–Ρ—, асоційовані Π·Ρ– Π·Π½ΠΈΠΆΠ΅Π½ΠΈΠΌ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·ΠΎΠΌ ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ с Ρ†Π΅Π»ΡŒΡŽ обобщСния соврСмСнных Π·Π½Π°Π½ΠΈΠΉ ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠΌΠ΅, Π² частности, Π΅Π³ΠΎ измСнСния ΠΏΡ€ΠΈ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ослоТнСниях. Π‘Π΄Π΅Π»Π°Π½Ρ‹ Π²Ρ‹Π²ΠΎΠ΄Ρ‹, Ρ‡Ρ‚ΠΎ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° этот процСсс, активизируя ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ ΠΈ сохраняя воспалСниС, ассоциированноС с Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°ΠΊΠ° ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. ΠŸΡ€ΠΈ обструкции ΠΎΠΏΡƒΡ…ΠΎΠ»ΡŒΡŽ ΠΆΠ΅Π»Ρ‡Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ, выявлСно, Ρ‡Ρ‚ΠΎ Π½Π° ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΌΠΎΠ³ΡƒΡ‚ Π²Π»ΠΈΡΡ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΆΠ΅Π»Ρ‡Π½Ρ‹Ρ… кислот, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π΅Π΄ΡƒΡ‚ ΠΊ измСнСнию сигнализирования Ρ‡Π΅Ρ€Π΅Π· Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ ΠΆΠ΅Π»Ρ‡Π½Ρ‹Ρ… кислот, ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ измСнСния состава ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠΌΠ°. Π£ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚ΠΎΠΉ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ² позволяСт ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΠΆΠ΅Π»Ρ‡Π½Ρ‹Ρ… кислот, Π·Π° счСт FXR ΠΈ GPBAR1 сигнализирования. ИсслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ обтурация ΠΆΠ΅Π»Ρ‡Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ, которая Π±Π»ΠΎΠΊΠΈΡ€ΡƒΠ΅Ρ‚ поступлСниС ΠΆΠ΅Π»Ρ‡ΠΈ Π² ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊ Π²Π΅Π΄Π΅Ρ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΌΡƒ росту Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ транслокации Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π² Ρ‚ΠΎΠ½ΠΊΠΈΠΉ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊ. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡ‹ способны Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π°Π³Π΅Π½Ρ‚Ρ‹ послС инфицирования ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ сниТаСтся ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΈ эта ΠΎΠΏΡƒΡ…ΠΎΠ»ΡŒ характСризуСтся ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΌ. Π’ частности, ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ измСнСния ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π»ΠΈΡΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… прСдставитСлСй, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Veillonella, Klebsiella ΠΈ Selenomonas, ΠΈ LPS-ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Prevotella, Hallella ΠΈ Enterobacter. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ количСства Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π›ΠŸΠ‘, ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ Π²Π°ΠΆΠ½ΡƒΡŽ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€ΠΎΠ»ΡŒ дисбактСриоза Π² посрСдничСствС хроничСского воспалСния. ΠžΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅, активируя ΠΏΡƒΡ‚ΡŒ NF-kB, ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ синтСзу ΠΈ сСкрСции ΠΏΡ€ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ хроничСскоС воспалСниС ΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поврСТдСния ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Ρ€Π°ΠΊΠ° ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, Π²Π°ΠΆΠ½Ρ‹ΠΌ являСтся поиск Π½ΠΎΠ²Ρ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ влияния Π½Π° Π΄Π°Π½Π½ΠΎΠ΅ патологичСскоС состояниС, Π² Ρ‚ΠΎΠΌ числС ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ использования ΠΏΡ€ΠΎΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ². ИмСнно эти ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ способны ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠΌ, (Ρ€Π΅)прСзСнтируя Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, ассоциированныС с ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΌ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·ΠΎΠΌ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹.This article presents a literature review to generalize current knowledge about the microbiome, in particular, its changes in pancreatic carcinogenesis and subsequent complications. It has been found out that pathogenic bacteria can affect this process by activating the proper receptors and maintaining the inflammation associated with the onset of pancreatic cancer. When the biliary tract is obstructed, it is found that the host's metabolism can be influenced by microbial modifications of bile acids that lead to changes in signalling through the bile acid receptors, as well as to various changes in the composition of the microbiome. Control of the intestinal microbiota using probiotics enables changing the metabolism of bile acids due to FXR and GPBAR1 signalling. Reviewed studies have shown that obscuration of the biliary tract that blocks the drain of bile into the intestine, leads to an increased growth of bacteria and the translocation of bacteria into the small intestine. It is proved that pathogenic microorganisms are able to act as carcinogenic agents after infecting the pancreas. The results of the research have showed that microbial diversity of the intestine is significantly reduced in pancreatic cancer and this tumour is characterized by a unique microbial profile. In particular, microbial changes in pancreatic cancer have been characterized by an increase in several species, such as Veillonella, Klebsiella and Selenomonas, and LPS-producing bacteria, including Prevotella, Hallella and Enterobacter. The increase in the number of bacteria that produce LPS confirms the important pathogenetic role of dysbiosis in the mediation of chronic inflammation. Oxidative damage, activating the pathway of NFkB, contributes to the synthesis and secretion of pro-inflammatory cytokines. Thus, prolonged chronic inflammation and oxidative damage are involved in the development of pancreatic cancer. Therefore, it is important to search for new directions of influence on this pathological condition, including the usage of probiotics. This medication can modify microbiota, (re) presenting bacteria associated with reduced pancreatic carcinogenesis
    corecore