855 research outputs found
Hyperon-nucleon scattering and hyperon masses in the nuclear medium
We analyze low-energy hyperon-nucleon scattering using an effective field
theory in next-to-leading order. By fitting experimental cross sections for
laboratory hyperon momenta below 200 MeV/c and using information from the
hypertriton we determine twelve contact-interaction coefficients. Based on
these we discuss the low-density expansion of hyperon mass shifts in the
nuclear medium.Comment: 10 pages, 2 figure
Neutron Star Constraints on the H Dibaryon
We study the influence of a possible H dibaryon condensate on the equation of
state and the overall properties of neutron stars whose population otherwise
contains nucleons and hyperons. In particular, we are interested in the
question of whether neutron stars and their masses can be used to say anything
about the existence and properties of the H dibaryon. We find that the equation
of state is softened by the appearance of a dibaryon condensate and can result
in a mass plateau for neutron stars. If the limiting neutron star mass is about
that of the Hulse-Taylor pulsar a condensate of H dibaryons of vacuum mass 2.2
GeV and a moderately attractive potential in the medium could not be ruled out.
On the other hand, if the medium potential were even moderately repulsive, the
H, would not likely exist in neutron stars. If neutron stars of about 1.6 solar
mass were known to exist, attractive medium effects for the H could be ruled
out. Certain ranges of dibaryon mass and potential can be excluded by the mass
of the Hulse-Taylor pulsar which we illustrate graphically.Comment: Revised by the addition of a figure showing the region of dibaryon
mass and potential excluded by the Hulse-Taylor pulsar. 18 pages, 11 figures,
latex (submitted to Phys. Rev. C
Observation of a baryon resonance with positive strangeness in K+ collisions with Xe nuclei
The status of our investigation of low-energy Xe collisions in the Xenon
bubble chamber DIANA is reported. In the charge-exchange reaction the spectrum of effective mass shows a resonant enhancement
with MeV/c and ^24.4\sigma$. The mass and width of the
observed resonance are consistent with expectations for the lightest member of
the anti-decuplet of exotic pentaquark baryons, as predicted in the framework
of the chiral soliton model.Comment: 9 pages, 4 figure
Can Doubly Strange Dibaryon Resonances be Discovered at RHIC?
The baryon-baryon continuum invariant mass spectrum generated from
relativistic nucleus + nucleus collision data may reveal the existence of
doubly-strange dibaryons not stable against strong decay if they lie within a
few MeV of threshold. Furthermore, since the dominant component of these states
is a superposition of two color-octet clusters which can be produced
intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced
production of dibaryon resonances could be a signal of QGP formation. A total
of eight, doubly-strange dibaryon states are considered for experimental search
using the STAR detector (Solenoidal Tracker at RHIC) at the new Relativistic
Heavy Ion Collider (RHIC). These states may decay to Lambda-Lambda and/or
proton-Cascade-minus, depending on the resonance energy. STAR's large
acceptance, precision tracking and vertex reconstruction capabilities, and
large data volume capacity, make it an ideal instrument to use for such a
search. Detector performance and analysis sensitivity are studied as a function
of resonance production rate and width for one particular dibaryon which can
directly strong decay to proton-Cascade-minus but not Lambda-Lambda. Results
indicate that such resonances may be discovered using STAR if the resonance
production rates are comparable to coalescence model predictions for dibaryon
bound states.Comment: 28 pages, 5 figures, revised versio
Antibaryons in massive heavy ion reactions: Importance of potentials
In the framework of RQMD we investigate antiproton observables in massive
heavy ion collisions at AGS energies and compare to preliminary results of the
E878 collaboration. We focus here on the considerable influence of the *real*
part of an antinucleon--nucleus optical potential on the antiproton momentum
spectra
Search for positively charged strangelets and other related results with E864 at the AGS
We report on the latest results in the search for positively charged
strangelets from E864's 96/97 run at the AGS with sensitivity of about per central collision. This contribution also contains new results of
a search for highly charged strangelets with . Production of light
nuclei, such as and , is presented as well. Measurements of yields
of these rarely produced isotopes near midrapidity will help constrain the
production levels of strangelets via coalescence. E864 also measures antiproton
production which includes decays from antihyperons. Comparisons with antiproton
yields measured by E878 as a function of centrality indicate a large
antihyperon-to-antiproton ratio in central collisions.Comment: 8 pages, 4 figures; Talk at SQM'98, Padova, Italy (July 20-24th,
1998
Development of Antibacterial Steel Surfaces Through Laser Texturing
[Abstract] The aim of the present study was to develop novel antibacterial touch surfaces through the laser texturing optimization of stainless steel. A wide range of laser fluence (2.11 J/cm2–5.64 J/cm2) and scanning interval (10 µm–30 μm) parameters were explored. The impact of surfaces with different patterns, wettability, and oxidation states on the antimicrobial behavior of Escherichia coli K-12 and biofilm hyper-producing Acinetobacter baumannii MAR002 was assessed. Modification of laser input enacted topographical changes with high scanning intervals leading to ordered surface patterns, while increasing the laser fluence to 5.64 J/cm2 created larger and less ordered plateaus and valleys. Texturing also drove a transition from a hydrophilic starting surface with a contact angle of 80.67° ± 3.35° to hydrophobic (138°–148°). Antimicrobial analysis and bioluminescence assays of E. coli, alongside biofilm forming test through A. baumannii MAR002 indicated the ability of laser texturing to produce effective bactericidal touch surfaces. No simple correlation was found between wettability and bacterial behavior, revealing that proliferation is dependent on roughness, oxidation, and wettability. For the conditions selected in this study, a laser fluence of 5.64 J/cm2 and a scanning interval of 10 µm showcased the lowest amount of recovered bacteria after 30 min.This research was supported by Project Nos. 592 p-01216A and IJCI-2016-29524 (awarded to A.P.G.), funded by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and MINECO, respectively. This manuscript is part of Process Design to Prevent Prosthetic Infections (Grant No. EP/P02341X/1)Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica; 592 p-01216AReino Unido. Engineering and Physical Sciences Research Council; EP/P02341X/
Chiral Lagrangian for strange hadronic matter
A generalized Lagrangian for the description of hadronic matter based on the
linear -model is proposed. Besides the baryon
octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken
scale invariance is incorporated. The observed values for the vacuum masses of
the baryons and mesons are reproduced. In mean-field approximation, vector and
scalar interactions yield a saturating nuclear equation of state. We discuss
the difficulties and possibilities to construct a chiral invariant baryon-meson
interaction that leads to a realistic equation of state. It is found that a
coupling of the strange condensate to nucleons is needed to describe the
hyperon potentials correctly. The effective baryon masses and the appearance of
an abnormal phase of nearly massless nucleons at high densities are examined. A
nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type
baryon-meson interaction and to establish a connection to the Walecka-model.Comment: Revtex, submitted to Phys. Rev.
Modeling Cluster Production at the AGS
Deuteron coalescence, during relativistic nucleus-nucleus collisions, is
carried out in a model incorporating a minimal quantal treatment of the
formation of the cluster from its individual nucleons by evaluating the overlap
of intial cascading nucleon wave packets with the final deuteron wave function.
In one approach the nucleon and deuteron center of mass wave packet sizes are
estimated dynamically for each coalescing pair using its past light-cone
history in the underlying cascade, a procedure which yields a parameter free
determination of the cluster yield. A modified version employing a global
estimate of the deuteron formation probability, is identical to a general
implementation of the Wigner function formalism but can differ from the most
frequent realisation of the latter. Comparison is made both with the extensive
existing E802 data for Si+Au at 14.6 GeV/c and with the Wigner formalism. A
globally consistent picture of the Si+Au measurements is achieved. In light of
the deuteron's evident fragility, information obtained from this analysis may
be useful in establishing freeze-out volumes and help in heralding the presence
of high-density phenomena in a baryon-rich environment.Comment: 31 pages REVTeX, 19 figures (4 oversized included as JPEG). For full
postscript figures (LARGE): contact [email protected]
Disappearance of Elliptic Flow: A New Probe for the Nuclear Equation of State
Using a relativistic hadron transport model, we investigate the utility of
the elliptic flow excitation function as a probe for the stiffness of nuclear
matter and for the onset of a possible quark-gluon-plasma (QGP)
phase-transition at AGS energies 1 < E_Beam < 11 AGeV. The excitation function
shows a strong dependence on the nuclear equation of state, and exhibits
characteristic signatures which could signal the onset of a phase transition to
the QGP.Comment: 11 pages, 4 Postscript figures, uses epsf.sty, submitted to Physical
Review Letter
- …