47 research outputs found
Molecular Mining of Alleles in Water Buffalo Bubalus bubalis and Characterization of the TSPY1 and COL6A1 Genes
discovered in the process. gene in water buffalo, which localized to the Y chromosome.The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology
Man and the Last Great Wilderness: Human Impact on the Deep Sea
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach
Anthropogenic modification of the countryside has resulted in much of the landscape consisting of fragments of once continuous habitat. Increasing habitat connectivity at the landscape-scale has a vital role to play in the conservation of species restricted to such remnant patches, especially as species may attempt to track zones of habitat that satisfy their niche requirements as the climate changes. Conservation policies and management strategies frequently advocate corridor creation as one approach to restore connectivity and to facilitate species movements through the landscape. Here we examine the utility of hedgerows as corridors between woodland habitat patches using rigorous systematic review methodology. Systematic searching yielded 26 studies which satisfied the review inclusion criteria. The empirical evidence currently available is insufficient to evaluate the effectiveness of hedgerow corridors as a conservation tool to promote the population viability of woodland fauna. However, the studies did provide anecdotal evidence of positive local population effects and indicated that some species use hedgerows as movement conduits. More replicated and controlled field investigations or long term monitoring are required in order to allow practitioners and policy makers to make better informed decisions about hedgerow corridor creation and preservation. The benefits of such corridors in regard to increasing habitat connectivity remain equivocal, and the role of corridors in mitigating the effects of climate change at the landscape-scale is even less well understood