134 research outputs found

    Coral bleaching following wintry weather

    Get PDF
    Extensive coral bleaching Occurred intertidally in early August 2003 in the Capricorn Bunker group (Wistari Reef, Heron and One Tree Islands; Southern Great Barrier Reef). The affected intertidal coral had been exposed to unusually cold (minimum = 13.3degreesC; wet bulb temperature = 9degreesC) and dry winds (44% relative humidity) for 2 d during predawn low tides. Coral bleached in the upper 10 cm of their branches and had less than 0.2 x 10(6) cell cm(-2) as compared with over 2.5 x 10(6), Cell cm(-2) in nonbleached areas. Dark-adapted quantum yields did not differ between symbionts in bleached and nonbleached areas. Exposing symbionts to light, however, led to greater quenching of Photosystem 11 in symbionts in the bleached coral. Bleached areas of the affected colonies had died by September 2003, with areas that were essentially covered by more than 80% living coral decreasing to less than 10% visible living coral cover. By January 2004, coral began to recover, principally from areas of colonies that were not exposed during low tide (i.e., from below dead, upper regions). These data highlight the importance of understanding local weather patterns as well as the effects of longer term trends in global climate

    Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats

    Get PDF
    Background: Divergent natural selection across environmental gradients has been acknowledged as a major driver of population and species divergence, however its role in the diversification of scleractinian corals remains poorly understood. Recently, it was demonstrated that the brooding coral Seriatopora hystrix and its algal endosymbionts (Symbiodinium) are genetically partitioned across reef environments (0-30 m) on the far northern Great Barrier Reef. Here, we explore the potential mechanisms underlying this differentiation and assess the stability of host-symbiont associations through a reciprocal transplantation experiment across habitats ('Back Reef', 'Upper Slope' and 'Deep Slope'), in combination with molecular (mtDNA and ITS2-DGGE) and photo-physiological analyses (respirometry and HPLC)

    Uncertainty in predictions of seabed sediment classes based on grab samples and acoustic data

    Get PDF
    Mapping seabed habitats is an essential prerequisite to policy and management decisions. The texture of the seabed sediments, defined with respect to the proportions of gravel, sand and mud size fractions, is a basic property that distinguishes sedimentary seabed habitats under the EUNIS habitat classification scheme. EUNIS sediment habitats are defined on this 2-D texture triangle. The composition of the seabed sediments at an unsampled site can be predicted by additive log-ratio cokriging from grab samples, and it is possible to include acoustic backscatter and bathymetry data to improve the precision of these predictions. In this presentation we shall show how this is achieved. The prediction distribution on the texture triangle can be summarized to express the uncertainty of these kriging predictions. Probabilities can be computed for each EUNIS texture class, and the uncertainty expressed with respect either to the probability of the most probable class, or the information content of the set of class probabilities summarized by their entropy

    Commentary: reconstructing four centuries of temperature-induced coral bleaching on the great barrier reef

    Get PDF
    Coral reefs are spectacular ecosystems found along tropical coastlines where they provide goods and services to hundreds of millions of people. While under threat from local factors, coral reefs are increasingly susceptible to ocean warming from anthropogenic climate change. One of the signature disturbances is the large-scale, and often deadly, breakdown of the symbiosis between corals and dinoflagellates. This is referred to as mass coral bleaching and often causes mass mortality. The first scientific records of mass bleaching date to the early 1980s (Hoegh-Guldberg et al., 2017). Kamenos and Hennige (2018, hereafter KH18), however, claim to show that mass coral bleaching is not a recent phenomenon, and has occurred regularly over the past four centuries (1572–2001) on the Great Barrier Reef (GBR), Australia. They support their claim by developing a putative proxy for coral bleaching that uses the suggested relationship between elevated sea surface temperatures (SSTs) and reduced linear extension rates of 44 Porites spp. coral cores from 28 GBR reefs. If their results are correct, then mass coral bleaching events have been a frequent feature for hundreds of years in sharp contrast to the vast majority of scientific evidence. There are, however, major flaws in the KH18 methodology. Their use of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset (based on ship and buoy observations) for reef temperatures from 1854 to 2001, ignores the increasing unreliability of these data which become sparse, less rigorous, and more interpolated going back in time. To demonstrate how the quality of these data degrades, we plot the average number of SST observations per month that contribute to each 200 x 200 km ERSST pixel (Figure 1A, black line). Note that from 1854 to 1900 the four ERSST pixels used by KH18 averaged only 0.85 observations per month, and 82% of these months had no observations at all. Given the heterogeneous nature of SST at local and regional levels, using such broad-scale data as ERSST, is likely to produce substantial errors at reef scales (Figure 1A, red line prior to 1900)

    Spatio-temporal connectivity of the aquatic microbiome associated with cyanobacterial blooms along a Great Lake riverine-lacustrine continuum

    Get PDF
    Lake Erie is subject to recurring events of cyanobacterial harmful algal blooms (cHABs), but measures of nutrients and total phytoplankton biomass seem to be poor predictors of cHABs when taken individually. A more integrated approach at the watershed scale may improve our understanding of the conditions that lead to bloom formation, such as assessing the physico-chemical and biological factors that influence the lake microbial community, as well as identifying the linkages between Lake Erie and the surrounding watershed. Within the scope of the Government of Canada’s Genomics Research and Development Initiative (GRDI) Ecobiomics project, we used high-throughput sequencing of the 16S rRNA gene to characterize the spatio-temporal variability of the aquatic microbiome in the Thames River–Lake St. Clair-Detroit River–Lake Erie aquatic corridor. We found that the aquatic microbiome was structured along the flow path and influenced mainly by higher nutrient concentrations in the Thames River, and higher temperature and pH downstream in Lake St. Clair and Lake Erie. The same dominant bacterial phyla were detected along the water continuum, changing only in relative abundance. At finer taxonomical level, however, there was a clear shift in the cyanobacterial community, with Planktothrix dominating in the Thames River and Microcystis and Synechococcus in Lake St. Clair and Lake Erie. Mantel correlations highlighted the importance of geographic distance in shaping the microbial community structure. The fact that a high proportion of microbial sequences found in the Western Basin of Lake Erie were also identified in the Thames River, indicated a high degree of connectivity and dispersal within the system, where mass effect induced by passive transport play an important role in microbial community assembly. Nevertheless, some cyanobacterial amplicon sequence variants (ASVs) related to Microcystis, representing less than 0.1% of relative abundance in the upstream Thames River, became dominant in Lake St. Clair and Erie, suggesting selection of those ASVs based on the lake conditions. Their extremely low relative abundances in the Thames suggest additional sources are likely to contribute to the rapid development of summer and fall blooms in the Western Basin of Lake Erie. Collectively, these results, which can be applied to other watersheds, improve our understanding of the factors influencing aquatic microbial community assembly and provide new perspectives on how to better understand the occurrence of cHABs in Lake Erie and elsewhere

    An investigation of the relation between the number of children and education in Italy

    Get PDF
    In this paper we have investigated the impact of the level of education on the number of children in Italy. We have selected 1,490 families from the 1997- 2005 Longitudinal Investigation on Italian Families (ILFI) dataset. Our dependent variable is represented by the number of children ever born to each respondent (and to his partner). Since the number of children ever born (CEB) is a count variable, we have implemented three empirical models: Poisson, Zero-Truncated Poisson and an Instrumental Variable Poisson, where grandparents’ education is exerted as an instrument of parents’ education. In particular, we have considered two stages for each model: in the first stage, we have estimated the impact of female’s education on her number of children, and in the second one, we have used also partner’s education to identify the previous effect. From the empirical results, we may observe a significant negative effect of the level of education on the number of children

    Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics

    Get PDF
    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10–5 cm s–1 (equivalent surface dissolution flux ca. 0.5 μmol cm–2 s–1 into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future

    Morphological stasis masks ecologically divergent coral species on tropical reefs

    Get PDF
    Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden'' conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively
    corecore