219 research outputs found

    Highly polarized alkenes as organocatalysts for the polymerization of lactones and trimethylene carbonate

    Get PDF
    In this work, the activity of N-heterocyclic olefins (NHOs), a newly emerging class of organopolymerization catalyst, is investigated to affect the metal-free polymerization of lactones and trimethylene carbonate (TMC). A decisive structure−activity relationship is revealed. While catalysts of the simplest type bearing an exocyclic CH2 moiety polymerize L-lactide (L-LA) and δ-valerolactone (δ-VL) in a non-living and non-quantitative manner, the introduction of methyl substituents on the exocyclic carbon radically changes this behavior. 2-Isopropylidene-1,3,4,5-tetramethylimidazoline is found to be highly active for a range of monomers such as L-LA, δ-VL, ε-caprolactone (ε-CL), and TMC, with quantitative conversion occurring within seconds with catalyst loadings of just 0.2 mol %. The high activity of this NHO further enables the ring-opening polymerization (ROP) of the macrolactone ω-pentadecalactone (PDL). However, this broad applicability is offset by a lack of control over the polymerizations, including side reactions as a consequence of its strong basicity. To overcome this, a saturated, imidazolinium-derived analogue was synthesized and subsequently demonstrated to possess a harnessed reactivity which enables it to polymerize both L-LA and TMC in a controlled manner (ĐM < 1.2). NMR spectroscopic and MALDI-ToF MS experiments highlight the differences in polymerization pathways for 2-methylene-1,3,4,5-tetramethylimidazoline, in which the exocyclic carbon is not substituted, in contrast to 2-isopropylidene-1,3,4,5-tetramethylimidazoline, with the former operating via its nucleophilicity and the latter acting as a base with enolizable δ-VL

    Selective and Sequential Catalytic Chemical Depolymerization and Upcycling of Mixed Plastics

    Get PDF
    Chemical recycling to monomer (CRM) provides a useful technique to allow for polymer-to-monomer-to-polymer circular economies. A significant challenge remains, however, in the treatment of mixed plastics by CRM in which unselective depolymerization requires either presorting of plastics or purification processes postdepolymerization, both of which add cost to waste plastic processing. We report a simple, yet selective, chemical depolymerization of three commonly used polymers, poly(lactic acid) (PLA), bisphenol A polycarbonate (BPA-PC), and polyethylene terephthalate (PET), using inexpensive and readily available common metal salt/organobase dual catalysts. By a judicious choice of catalyst and conditions, selective and sequential depolymerization of mixtures of the polymers was demonstrated. Furthermore, the potential for upcycling of polymers to value-added monomers was explored through the application of alternative nucleophiles within the depolymerization.</p

    Dependence of copolymer sequencing based on lactone ring size and ε-substitution

    Get PDF
    The copolymerization of an ε-substituted ε-lactone, menthide (MI), and a range of nonsubstituted lactones (6-, 7-, 8-, and 9-membered rings) was investigated in order to determine the factors that affect the sequencing of the MI copolymers. Analysis by quantitative 13C NMR spectroscopy showed the copolymerization of MI with a nonsubstituted lactone of ring size 7 or less produced a randomly sequenced copolymer, as a consequence of the smaller lactone polymerizing first and undergoing rapid transesterification as MI was incorporated. Conversely, copolymerization with larger ring lactones (ring size 8 and above) produced block-like copolymers as a consequence of MI polymerizing initially, which does not undergo rapid transesterification side reactions during the incorporation of the second monomer. Terpolymerizations of a small ring lactone, macrolactone, and menthide demonstrated methods of producing lactone terpolymers with different final sequences, depending on when the small ring lactone was injected into the reaction mixture

    Functional degradable polymers by radical ring-opening copolymerization of MDO and vinyl bromobutanoate : synthesis, degradability and post-polymerization modification

    Get PDF
    The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers’ molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by 1H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods

    Bio-based non-isocyanate poly(hydroxy urethane)s (PHU) derived from vanillin and CO<sub>2</sub>

    Get PDF
    As an alternative to the use of hazardous phosgene-based isocyanates for polyurethane preparation, non-isocyanate poly(hydroxy urethanes) (PHU) based on 5-membered cyclic carbonates have been developed. However, to date, most aromatic PHUs are oil-based or based on toxic precursors such as bisphenol-A. In this work, bio-based non-isocyanate poly(hydroxy urethanes) (PHUs) prepared from vanillin are reported for the first time. First, three different vanillin-derived bis-cyclic carbonates were synthesized. Subsequently, each monomer was reacted with two different bis-amines to yield six different PHUs, which were characterized in depth by 1H and 13C NMR spectroscopy, FTIR, SEC and DSC. PHUs based on vanillic acid were found to exhibit thermal properties superior to bisphenol A-based PHUs, with a Tg of around 66 °C. It is envisioned that vanillin-based PHUs could potentially be a safer alternative to harmful bisphenol A-based PHUs and provide a useful strategy for CO2 revalorization, especially considering that vanillin is an abundant byproduct of Kraft lignin production

    Controlling the synthesis of degradable vinyl polymers by xanthate-mediated polymerization

    Get PDF
    The copolymerization of vinyl acetate (VAc) and 2-methylene-1,3-dioxepane (MDO), as well as the homopolymerization of MDO in the presence of a p-methoxyphenyl xanthate chain transfer agent (CTA) is reported and comparison of the homopolymerization of MDO with other known xanthates was also investigated. In depth investigation showed loss of the xanthate functionality was a result of Z-group fragmentation leading to the formation of carbonodithioate groups, as confirmed by 13C NMR spectroscopy. The use of the xanthate with a substituted phenyl Z-group drastically reduces fragmentation through the Z-group and hence significantly increases chain-end retention during the polymerization using the RAFT/MADIX technique. Post-polymerization modification of the chain-end of poly(MDO) was achieved by in situ aminolysis and base-catalyzed Michael addition of propargyl methacrylate onto the terminal thiol to form alkyne functional poly(MDO)
    corecore