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ABSTRACT: The copolymerization of an ε-substituted ε-
lactone, menthide (MI), and a range of nonsubstituted
lactones (6-, 7-, 8-, and 9-membered rings) was investigated
in order to determine the factors that affect the sequencing of
the MI copolymers. Analysis by quantitative 13C NMR
spectroscopy showed the copolymerization of MI with a
nonsubstituted lactone of ring size 7 or less produced a
randomly sequenced copolymer, as a consequence of the
smaller lactone polymerizing first and undergoing rapid
transesterification as MI was incorporated. Conversely, copolymerization with larger ring lactones (ring size 8 and above)
produced block-like copolymers as a consequence of MI polymerizing initially, which does not undergo rapid transesterification
side reactions during the incorporation of the second monomer. Terpolymerizations of a small ring lactone, macrolactone, and
menthide demonstrated methods of producing lactone terpolymers with different final sequences, depending on when the small
ring lactone was injected into the reaction mixture.

The use of lactones in ring-opening polymerization (ROP)
has been studied in a range of materials including

biomedical materials,1−6 polymer brushes,7,8 cross-linked net-
works,9−11 telechelic polymers,12,13 and self-assembling copoly-
mers.14,15 However, a major drawback in the application of
copolymer materials from lactones has been transesterification
side reactions, including inter- and intramolecular trans-
esterification, which has been shown to result in random
copolymers with broad dispersities.16−24 This has made
advanced polymer architectures such as multiblock copolymers
or sequence-controlled block copolymers difficult to achieve.
While significant advances have been made in controlling the
sequence of monomer addition using stereochemistry,25−28

commonly, copolymerization of lactones in one pot leads to
randomly sequenced copolymers as a consequence of trans-
esterification side reactions occurring alongside ROP.22−24,29,30

This is amplified in the ROP of large ring (macro)lactones,
such as ambrettolide (Amb), in which the formation of low
molecular weight cyclic species through the ring-expansion
transesterification is an intrinsic aspect of the reaction;31

however, the control over sequence of monomer addition could
have significant effects on the subsequent behavior and
degradation of the resultant materials.16,32,33

Transesterification side reactions can be curbed through
careful choice of monomer. For example, small ring lactones
polymerize rapidly and can be terminated before trans-
esterification side reactions can occur. However, in order to
produce a block copolymer in one pot, the sequence relies on
differences in reactivity ratios between the monomers, one
monomer must have a much slower rate of polymerization than

the other, while avoiding competitive transesterification side
reactions that randomize the polymer chain sequence. Despite
these limitations, the one-pot copolymerization of a lactone
with another monomer, such as a vinyl alcohol or a carbon
dioxide/epoxy mixture, which rely on different polymerization
techniques to produce block copolymers have been previously
demonstrated.34−36 Block copolymers of lactones have also
been produced through sequential polymerization of each
monomer, most frequently implemented in copolymerizations
of lactide and ε-caprolactone (εCL).3−5,19,20,29,37−39 Recently,
however, Duchateau and co-workers showed that it is possible
to produce a block copolymer of ε-decalactone (εDL) and ω-
pentadecalactone (PDL).21,22 Interestingly, the same study
showed that the copolymerization of εDL with εCL yielded
statistical copolymers. We further demonstrated the versatility
of this approach to show that block-like copolymers are
achievable in the copolymerization of PDL with ε-lactones that
are functionalized on the ε-carbon as a consequence of
hindered transesterification on the ester linkage that is
formed.40

Observing the different polymer microstructures obtained in
the copolymerization of εDL with lactones of different ring size,
PDL (16-membered ring, block-like) and εCL (7-membered
ring, statistical), we were curious to investigate the micro-
structure of polymers resulting from the one-pot copolymeriza-
tion of ε-substituted ε-lactones (εSLs) and a nonsubstituted
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lactone of varying ring size, in order to potentially create
complex materials with controllable behavior. We show for the
first time that a monomer ring size of 8 is the critical point at
which block copolymers become the preferred microstructure.
Furthermore, we demonstrate the ability to overcome this
inherent sequence control to produce random copolymers of
the εSL, menthide, and macrolactones through terpolymeriza-
tion.
The copolymerization of menthide (MI) with PDL has been

shown to produce copolymers with block-like sequencing as a
consequence of the rapid polymerization of MI, followed by the
incorporation of PDL, with no transesterification side reactions
occurring in the MI block.40 In order to determine whether all
MI-lactone copolymers are block-like, the copolymerization of
MI was investigated with other nonsubstituted lactones; δ-
valerolactone (δVL), εCL, ζ-heptalactone (ζHL), and η-
caprylolactone (ηCL) of varying ring size (Scheme 1, Table

1) using Mg(BHT)2(THF)2 as a catalyst. All polymerizations
proceeded to high monomer conversions (≥75%), however the
dispersity (ĐM) for each copolymer was high, which indicates
that transesterification side reactions of the nonsubstituted
lactones occurred in each case, consistent with MI/PDL
copolymerization.40 DOSY NMR spectroscopy confirmed that,
in each copolymerization, only one polymer species had been
formed, that is, only copolymers were produced in the
copolymerization and no homopolymer species resulted
(Figure S1).
The MI/δVL copolymer was analyzed by quantitative 13C

NMR spectroscopy (Figure 1a). Each carbonyl diad resonance
observed (MI*−MI, MI*−δVL, δVL*−MI, δVL*−δVL, where
* denotes the observed carbonyl) had equivalent integrals and,
therefore, equal quantities of each type of carbonyl within the
copolymer, which is characteristic of a random copolymer
(Table 1, entry 1). In a previous study, it was determined that
when using Mg(BHT)2(THF)2 as a catalyst, the polymerization
of δVL to DP50 is extremely rapid (under 5 min).16 Hence,
transesterification moves a chain end MI unit to the middle of
the chain before another MI unit is added to the chain end. As
the transesterification side reactions are randomly placed, the
final copolymer would be completely random in sequence once
all MI has been incorporated. This is the opposite to the
copolymerization of MI and PDL, where the unsaturated

lactone polymerizes after the substituted lactone and is a
consequence of the higher affinity of δVL to the catalyst as well
as its higher ring strain compared to MI and PDL. As PMI is
thought to exhibit little to no transesterification, the ester
linkage in PMI could be “locked” against transesterification side
reactions. The prevention of transesterification side reactions
by the isopropyl group in esters MI*−MI and δVL*−MI
means transesterification only occurs on the esters, δVL*−δVL
and MI*−δVL. Similarly, copolymerization of MI and εCL was
also found to result in randomly sequenced copolymers (Figure
1b). Again, the rapid homopolymerization of εCL (cf. MI)40 is
postulated to result in ROP of ε-CL, but again, as MI is added
to the chain-end, transesterification side reactions occur before
the addition of another MI unit (i.e., the rate of trans-
esterification of PCL is greater than the rate of ROP of MI),
which causes a random copolymer to form.
In contrast, quantitative 13C NMR spectroscopic analysis

(Figure 1c) of the copolymerization of MI with ζHL (an 8-
membered ring lactone) showed the carbonyl diad resonances
to have unequal integrals, with larger resonances observed for
ζHL*−ζHL and MI*−MI carbonyl diad resonances than
ζHL*−MI and MI*−ζHL carbonyl diad resonances. The
sequencing of the polymer chain is therefore block-like and not
random. Copolymerization of MI with ηCL (a 9-membered
ring lactone) similarly produced copolymers that exhibited the
same block-like behavior as P(ζHL-co-MI). Thus, copolymer-
izations of MI with lactones containing larger ring size than 7
(εCL) have been found to only form block-like copolymers,

Scheme 1. Copolymerization of Menthide with
Nonsubstituted Lactones Catalysed by Mg(BHT)2(THF)2

Table 1. Copolymerizations of Menthide with a Linear Lactone at 1:1 mol % Targeting an Overall DP of 100

conversiona (%) diadsc

lactone
(L)

ring
size MI L total

Mp
b
(GPC)

(kDa)
Mn

b
(GPC)

(kDa)
Mw

b
(GPC)

(kDa) ĐM
b

Mn
a
(NMR)

(kDa) L*−L L*−MI MI*−L MI*−MI sequencing

δVL 6 60 90 75 5.8 23.9 5.5 2.3 9.7 0.22 0.28 0.26 0.25 random
εCL 7 60 97 79 37.7 28.0 40.9 1.5 10.7 0.24 0.24 0.25 0.27 random
ζHL 8 74 87 81 11.6 3.8 11.9 3.1 11.9 0.45 0.05 0.09 0.42 block-like
ηCL 9 57 94 76 19.2 18.4 28.1 1.5 10.9 0.40 0.08 0.09 0.43 block-like

aDetermined by 1H NMR spectroscopy. bDetermined by SEC in CHCl3 against poly(styrene) standards.
cDetermined by quantitative 13C NMR

spectroscopy, with * defining the carbonyl analyzed.

Figure 1. Quantitative 13C NMR spectra of the carbonyl region for
copolymers of menthide with (a) δ-valerolactone, (b) ε-caprolactone,
(c) ζ-heptalactone, (d) η-caprylolactone, and (e) ω-pentadecalactone
at 1:1 mol % monomers with a total DP of 100 (125 MHz, CDCl3,
298 K).
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which is potentially a consequence of the lower activity of the
catalyst toward these larger ring lactones.
As such, we postulate that the polymer microstructure is

dependent on reactivity of the monomers (which, in turn, is
dependent on their ring strain, among other factors). While all
nonsubstituted lactones do undergo transesterification at some
point in the copolymerization, as evidenced by a broad ĐM in
each case, the effect on the polymer sequencing is dependent
on whether MI has already been polymerized. For monomers
that are less reactive than MI in ROP, consumption of the
comonomer after MI, combined with the much lower rates of
transesterification for PMI, which is a result of steric hindrance
around the linear ester results in a block of linear lactone
formed second that can only undergo transesterification within
itself. However, if the comonomer is more reactive than MI, a
PMI block is not formed and hence, transesterification side
reactions that occur concurrently with MI incorporation results
in randomly sequenced copolymers.
Further investigation of the transesterification behavior in

these systems showed that the homopolymerization of MI
under the same conditions led to only a small increase in
dispersity (ĐM = 1.3) after 1 week (after 5 h: 75% monomer
conversion, ĐM = 1.26) broadening further to ĐM = 1.5 after 2
weeks. These results show that transesterification side reactions
are occurring, albeit very slowly in comparison to poly(εCL).
This is most likely an effect of the ε-substituent sterically
hindering the transesterification of the PMI. In order to
determine if transesterification occurred between adjacent MI
units (MI*−MI), the transesterification of a DP5 PCL and a
DP50 PMI (Mn = 650 and 8400 g·mol−1, respectively) was
studied in a 1 M solution in toluene, with Mg(BHT)2(THF)2 at
80 °C. After 72 h, SEC analysis of the resultant polymer
showed two distinct molecular weight peaks that correspond to
the original homopolymers (Figure S2). Further analysis of the
final material by quantitative 13C NMR spectroscopy showed
less than 1% of carbonyl diad resonances were attributable to
adjacent εCL and MI repeat units, thus, confirming that
transesterification into MI−MI sequences is severely retarded,
unlike as commonly observed in other polyester blends.16,24

As a consequence of this reduced transesterification within
poly(εSL)s, the production of random copolymers is difficult to
achieve. Both εSL monomers and macrolactones are known to
produce random copolymers with small nonsubstituted
lactones; therefore, we postulated that a terpolymerization of
an εSL monomer with a macrolactone and smaller lactone
could produce polymers with random sequencing. From the
above results and previous work,16 it can be assumed that the
rate of consumption of each monomer will be εCL ≫ MI >
PDL, and as shown, transesterification of εCL will occur while
MI is consumed to form a random copolymer. While midchain
MI would be “locked-in”, when PDL is added to the chain end,
transesterification of “unlocked” esters (εCL*−εCL and
MI*−εCL) would still occur, thus, randomizing the polymer
sequence, albeit with the absence of PDL*−MI resonances. As
such, the terpolymerization of equimolar quantities of εCL, MI,
and PDL under the conditions used in this study was
conducted. 1H NMR spectroscopy showed complete con-
sumption of εCL within 1 h of polymerization, with PDL
consumed more rapidly than MI over the next 5 h (Figure 2).
The quicker consumption of PDL compared to MI is possibly a
consequence of the preference of MI for propagation from a
menthide chain end (evidenced by the slow initiation from
benzyl alcohol).40 Analysis of the final copolymer by

quantitative 13C NMR spectroscopy showed that, in contrast
to our expectation, the final copolymer contained all nine
possible carbonyl diad resonances (Figure 3). The relative
integrals for each of the εCL and MI carbonyl diad resonances
were all equivalent, suggesting random sequencing of these

Figure 2. Semilogarithmic kinetic plot for the terpolymerization of ε-
caprolactone, menthide and pentadecalactone, conducted at 80 °C in
toluene with [εCL]0/[PDL]0/[MI]0/[BnOH]0/[cat.]0 = 50:50:50:1:1.

Figure 3. Quantitative 13C NMR spectra of the carbonyl region for (a)
the one-pot terpolymerization of equimolar quantities of ε-CL, MI,
and PDL with an initial concentration of [εCL]0/[MI]0/[PDL]0/
[BnOH]0/[cat.]0 = 50:50:50:1:1, and (b) the copolymerization of
equimolar quantities of MI and PDL with a timed injection of ε-CL
(125 MHz, CDCl3, 298 K).
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monomers throughout the polymer chain (Table S2).
However, in the case of PDL carbonyl diad resonances only
PDL*−PDL and PDL*−εCL diad resonances exhibited similar
integrals and the integral corresponding to the PDL*−MI
carbonyl diad resonance accounted for less than 1% of the
carbonyl diad resonances, which can only be accounted for by
PDL monomer being added to the chain end immediately after
a MI monomer is added and before transesterification side
reactions have occurred.
As the terpolymerization of εCL, MI and PDL is shown to

occur with more rapid PDL incorporation than MI
incorporation, reducing the molar ratio of εCL with respect
to PDL and MI should allow for more transesterification during
MI incorporation, producing a more prevalent PDL*−MI
carbonyl diad resonance and therefore closer to random
polymer sequencing. As such, the terpolymerization of εCL,
MI, and PDL was carried out at a molar ratio of 10:50:50 εCL/
MI/PDL. Analysis of the resultant material by quantitative 13C
NMR spectroscopy revealed the presence of all nine expected
carbonyl diad resonances, however two carbonyl diad
resonances (PDL*−PDL and MI*−MI) appear prominently
and with larger relative integrals than would be expected with a
randomly sequenced terpolymer (Table S2). In contrast to our
expectations, this procedure yields block-like copolymers, most
likely as a consequence of the low quantity of εCL reducing the
amount of transesterification.
We also postulated that the introduction of ε-caprolactone

into a P(MI-co-PDL) prepolymer could randomize the chain
through transesterification side reactions during εCL incorpo-
ration, similar to the sequential polymerization of PDL followed
by εCL.16 This could then be used to produce a MI block-like
copolymer with a tunable, degradable segment.16 The
copolymerization of equimolar quantities of PDL and MI was
undertaken before addition of a 1 M solution of εCL in toluene
after 8 h. After a total 24 h of polymerization, the resultant
polymer was shown to possess block-like sequencing of all
monomers by 13C NMR spectroscopy (Figure 3b). Interest-
ingly, the only carbonyl diad resonances observed relating to
εCL incorporation were PDL*−εCL, εCL*−PDL, and
εCL*−εCL, no εCL*−MI or MI*−εCL diads were observed.
Furthermore, the significant difference in integration between
the large PDL*−PDL and εCL*−εCL carbonyl diad
resonances compared to the smaller PDL*−εCL and εCL*−
PDL carbonyl diad resonances is indicative of a more block-like
sequencing with a gradation between these blocks also. This is
unexpected given previous sequential additions of εCL to PDL
polymerizations;16,17,23,24 however, this does provide a method
for the one-pot production of a εCL block-like terpolymer with
two other lactones.
The copolymerization of the ε-substituted-ε-lactone, men-

thide, with nonsubstituted lactones of varying size has been
shown to enable unique ROP behavior. The presence of the ε-
substitution has been shown to severely hinder transester-
ification side reactions that enable the synthesis of statistical or
block copolymers, depending on the relative polymerization
rates of the monomers. The differences in ROP and
transesterification reactivities of MI, small ring lactones and
macrolactones were then used to demonstrate the production
of terpolymers with different polymer sequences resulting from
the time at which the smaller lactone is introduced into the
polymerization.
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