41 research outputs found

    Substratum géologique et partage des terres dans le sud du Tchad Région des lacs de Léré et de Tréné et réserve de faune de Binder Nayri

    Get PDF
    National audienceÀ travers une analyse du substratum gĂ©ologique et de l'occupation du sol dans unerĂ©gion sahĂ©lo-soudanienne au sud du Tchad : le massif du Mayo-KĂ©bbi (carte 1), nousproposons de montrer :– quels sont les liens entre la nature du substratum gĂ©ologique (socle et formationssuperficielles) et les paysages ;– comment se rĂ©partissent les ressources naturelles entre les paysages et comment serĂ©alise le partage entre les zones fortement anthropisĂ©es et les zones naturelles dĂ©diĂ©esĂ  une rĂ©serve de faune.BasĂ©e sur une analyse de terrain spatialisĂ©e (cartographie gĂ©ologique et pĂ©dologique,enquĂȘte villageoise...), complĂ©tĂ©e par des Ă©lĂ©ments de bibliographie, la mĂ©thode faitĂ©galement appel aux outils de tĂ©lĂ©dĂ©tection pour la mise Ă  jour de la carte d'occupationdu sol. La compilation globale aboutit Ă  une meilleure comprĂ©hension de l’organisationdes paysages

    Neoproterozoic crustal evolution in Southern Chad: Pan-African ocean basin closing, arc accretion and late- to post-orogenic granitic intrusion.

    No full text
    International audienceIn the Lake LĂ©rĂ© region, southern Chad, Neoproterozoic terrains are distributed in four lithostructural groups that reveal the geotectonic evolution of a part of the Pan-African orogenic domain. The first group includes basaltic volcanic rocks and fine-grained detrital sedimentary rocks of pre-tectonic basins that were emplaced in an extensional regime, close to a volcanic arc. The second and third groups include calc-alkaline gabbroic intrusions emplaced at an upper crustal level and a midcrustal tonalite, respectively, that are interpreted to be the roots of an active margin volcanic arc. These first three groups experienced WNW to ESE compression, and may belong to a fore-arc basic—volcanic arc—back-arc basin system that was accreted eastward to the Palaeoproterozoic Adamaoua-YadĂ© Block. The fourth group includes post-tectonic granite plutons invading the older groups. This paper documents the accretion processes in the southern margin of the Saharan Metacraton

    Hydrological budget of Lake Chad : assessment of lake-groundwater interaction by coupling Bayesian approach and chemical budget

    Get PDF
    International audienceEstimation of lake-groundwater interactions is a crucial step to constrain water balance of lacustrine and aquifersystems. Located in the Sahel, the Lake Chad is at the center of an endorheic basin of 2,5.106 km2. One of themost remarkable features of this terminal lake is that, despite the semi-arid context and high evaporation rates of thearea, its waters are fresh. It is proposed in the literature that the solutes are evacuated in the underlying quaternaryaquifer bearing witness to the importance of surface water and groundwater exchanges for the chemical regulationof the lake. The water balance of this system is still not fully understood. The respective roles of evaporation versusinfiltration into the quaternary aquifer are particularly under constrained.To assess lake-groundwater flows, we used the previous conceptual hydrological model of the lake Chad proposedby Bader et al. (Hydrological Sciences Journal, 2011). This model involves six parameters including infiltrationrate. A probabilistic inversion of parameters, based on an exploration of the parameters space through a Metropolisalgorithm (a Monte Carlo Markov Chain method), allows the construction of an a posteriori Probability DensityFunction of each parameter yielding to the best fits between observed lake levels and simulated. Then, a chemicalbudget of a conservative element, such as chloride, is introduced in the water balance model using the optimalparameters resulting from the Bayesian inverse approach.The model simulates lake level and chloride concentration variations of lake Chad from 1956 up to 2008. Simulated lake levels are in overall agreement with the observations, with a Nash-Sutcliffe efficiency coefficient above0.94 for all sets of parameters retained. The infiltration value, obtained by such probabilistic inversion approach,accounts for 120±20 mm/yr, representing 5% of the total outputs of the lake. However, simulated chloride concentrations are overestimated in comparison to the scarce measurements available over that period. As an example,the mean chloride concentration measured in the southern pool on a basis of our synthesis of existing chemicaldata since the 1970’s is approximately three time lower than the computed mean concentration. This may be dueto either the non-representativeness of our chemical dataset or overestimation of the evaporation rate that is fixedto 2000 mm/yr in our model.This study tackles the quantification of the lake water flows to the quaternary aquifer system and the associateduncertainties from a probabilistic point of view. This is an essential step to improve predictions of groundwaterresources in the Lake Chad Basin under climate change

    11th Applied isotope geochemistery conference AIG-11

    Get PDF
    36Cl measurements in groundwaters of the deep confined aquifer of the Lake Chad Basin (LCB) were performed in order to constrain groundwater geochemical ages and residence times. Twenty-seven wells were sampled in Nigeria, Niger and Chad in the southern parts of the large (700 000 km2) multilayered aquifer of the LCB. 36Cl/Cl values range between 11±1.10-15 to 148±8.10-15 at/at. The highest ratios are observed near the recharge zone of the Nigerian part of the Continental Terminal aquifer, while the lowest ones are found in wells located near the southern fringe of the present-day lake Chad. Chloride concentrations are low (below 100 mg/l) and not correlated to the 36Cl/Cl values, indicating negligible dissolution of evaporites in most samples. Reliable 36Cl ages can be calculated along the different flow paths investigated, suggesting residence times of the deep groundwaters larger than 300 000 years. These results are consistent with new AMS-14C data below the detection limit but are in contradiction with previous 14C data obtained in the area

    Impact des Processus Hydrochimique sur la QualitĂ© des Eaux souterraines de la Ville de N’DjamĂ©na-Tchad

    Get PDF
    The problem of access to water in quality and quantity is a major challenge, because it strongly influences the socio-economic conditions of populations in developing countries. The water of the basement of the city of N'Djamena is not sheltered from the risk of pollution. She disposes very little functional wastewater disposal system because the collection networks are almost non-existent, moreover there is a lack of infrastructures for evacuation of household waste, as well as the solid waste treatment units. In addition, under the town of N'Djamena there are two main aquifers located respectively at about 10 and 60 m depth, and the presence of an intermediate aquifer about 30 m deep was also noted. Like all urban cities, these aquifers are not immune to the risks associated with human activities. In order to highlight the influence of the hydrochemical process on the groundwater quality of the city of N'Djamena, a study was conducted on a sample of well water and borehole. In total, 20 open wells and 16 boreholes were sampled and analyzed. The pH and the temperature were measured in situ using the pH 323 / Set B mixed electrode and the conductivity using the Lf 318 / Set electrode. It is the same for the alkalinity which is determined by titrimetry, using a HACH / 16900 brand digital titrator. The analysis of major ions was carried out at the Laboratory of Hydrogeology of the University of Avignon. the anions (Cl - , SO42- , NO3 - ) were analyzed using a Dionex ion chromatograph, and the cations (Ca2+ , Mg2+ , Na+ , K + ) using an atomic absorption spectrometer for with a relative uncertainty of 5%. The results of the in-situ parameters have shown that the waters have a pH which is around 6.85 in the wells and 7.24 in the boreholes and the measured temperature is close to the ambient temperature of the air which is 28 ° C. The mineralization of the waters is sometimes high and this results in values of conductivities that can reach 1253 ΌS / cm), especially in the wells. This increase in conductivity is accompanied by an increase in Cl - and NO3 - ions in the water. Groundwater has a wide variety of chemical facies, among which mention may be made of calciumbicarbonate-type water, sometimes nitrated, sodium bicarbonate and potassium and nitrate, which may have high chloride contents and bicarbonate and chloride and nitrate calcium or sodium. Principal Component Analysis (PCA) has shown that the main processes influencing groundwater chemistry are hydrolysis of silicates, cation exchange between groundwater and clayey minerals, evaporation and the impact of human activities

    Unraveling the hydrological budget of isolated and seasonally contrasted subtropical lakes

    Get PDF
    Complete understanding of the hydrological functioning of large-scale intertropical watersheds such as the Lake Chad basin is becoming a high priority in the context of climate change in the near future and increasing demographic pressure. This requires integrated studies of all surface water and groundwater bodies and of their quite-complex interconnections. We present here a simple method for estimating the annual mean water balance of sub-Sahelian lakes subject to high seasonal contrast and located in isolated regions with no road access during the rainy season, a situation which precludes continuous monitoring of in situ hydrological data. Our study focuses for the first time on two lakes, Iro and Fitri, located in the eastern basin of Lake Chad. We also test the approach on Lake Ihotry in Madagascar, used as a benchmark site that has previously been extensively studied by our group. We combine the ÎŽ18O and ÎŽ2H data that we measured during the dry season with altimetry data from the SARAL satellite mission in order to model the seasonal variation of lake volume and isotopic composition. The annual water budget is then estimated from mass balance equations using the Craig–Gordon model for evaporation. We first show that the closed-system behavior of Lake Ihotry (i.e., precipitation equal to evaporation) is well simulated by the model. For lakes Iro and Fitri, we calculate evaporation to influx ratios (E∕I) of 0.6±0.3 and 0.4±0.2, respectively. In the case of the endorheic Lake Fitri, the estimated output flux corresponds to the infiltration of surface water toward the surface aquifer that regulates the chemistry of the lake. These results constitute a first-order assessment of the water budget of these lakes, in regions where direct hydrological and meteorological observations are very scarce or altogether lacking. Finally, we discuss the implications of our data on the hydro-climatic budget at the scale of the catchment basins. We observe that the local evaporation lines (LELs) obtained on both lake and aquifer systems are slightly offset from the average rainfall isotopic composition monitored by IAEA at N'Djamena (Chad), and we show that this difference may reflect the impact of vegetation transpiration on the basin water budget. Based on the discussion of the mass balance budget we conclude that, while being broadly consistent with the idea that transpiration is on the same order of magnitude as evaporation in those basins, we cannot derive a more precise estimate of the partition between these two fluxes, owing to the large uncertainties of the different end-members in the budget equations.</p

    Unraveling the hydrological budget of isolated and seasonally contrasted subtropical lakes

    Get PDF
    Complete understanding of the hydrological functioning of large-scale intertropical watersheds such as the Lake Chad basin is becoming a high priority in the context of climate change in the near future and increasing demographic pressure. This requires integrated studies of all surface water and groundwater bodies and of their quite-complex interconnections. We present here a simple method for estimating the annual mean water balance of sub-Sahelian lakes subject to high seasonal contrast and located in isolated regions with no road access during the rainy season, a situation which precludes continuous monitoring of in situ hydrological data. Our study focuses for the first time on two lakes, Iro and Fitri, located in the eastern basin of Lake Chad. We also test the approach on Lake Ihotry in Madagascar, used as a benchmark site that has previously been extensively studied by our group. We combine the ÎŽ18O and ÎŽ2H data that we measured during the dry season with altimetry data from the SARAL satellite mission in order to model the seasonal variation of lake volume and isotopic composition. The annual water budget is then estimated from mass balance equations using the Craig–Gordon model for evaporation. We first show that the closed-system behavior of Lake Ihotry (i.e., precipitation equal to evaporation) is well simulated by the model. For lakes Iro and Fitri, we calculate evaporation to influx ratios (E∕I) of 0.6±0.3 and 0.4±0.2, respectively. In the case of the endorheic Lake Fitri, the estimated output flux corresponds to the infiltration of surface water toward the surface aquifer that regulates the chemistry of the lake. These results constitute a first-order assessment of the water budget of these lakes, in regions where direct hydrological and meteorological observations are very scarce or altogether lacking. Finally, we discuss the implications of our data on the hydro-climatic budget at the scale of the catchment basins. We observe that the local evaporation lines (LELs) obtained on both lake and aquifer systems are slightly offset from the average rainfall isotopic composition monitored by IAEA at N'Djamena (Chad), and we show that this difference may reflect the impact of vegetation transpiration on the basin water budget. Based on the discussion of the mass balance budget we conclude that, while being broadly consistent with the idea that transpiration is on the same order of magnitude as evaporation in those basins, we cannot derive a more precise estimate of the partition between these two fluxes, owing to the large uncertainties of the different end-members in the budget equations.</p

    The Lake CHAd Deep DRILLing project (CHADRILL) - targeting ~ 10 million years of environmental and climate change in Africa

    Get PDF
    At present, Lake Chad ( ~13°0 N, ~14° E) is a shallow freshwater lake located in the Sahel/Sahara region of central northern Africa. The lake is primarily fed by the Chari-Logone river system draining a ~600 000 km2 watershed in tropical Africa. Discharge is strongly controlled by the annual passage of the intertropical convergence zone (ITCZ) and monsoon circulation leading to a peak in rainfall during boreal summer. During recent decades, a large number of studies have been carried out in the Lake Chad Basin (LCB). They have mostly focused on a patchwork of exposed lake sediments and outcrops once inhabited by early hominids. A dataset generated from a 673m long geotechnical borehole drilled in 1973, along with outcrop and seismic reflection studies, reveal several hundred metres of Miocene-Pleistocene lacustrine deposits. CHADRILL aims to recover a sedimentary core spanning the Miocene-Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions such as high CO2 and absence of Northern Hemisphere ice sheets. These investigations will also help unravel both the age and the origin of the lake and its current desert surrounding. The LCB is very rich in early hominid fossils (Australopithecus bahrelghazali; Sahelanthropus tchadensis) of Late Miocene age. Thus, retrieving a sediment core from this basin will provide the most continuous climatic and environmental record with which to compare hominid migrations across northern Africa and has major implications for understanding human evolution. Furthermore, due to its dramatic and episodically changing water levels and associated depositional modes, Lake Chad's sediments resemble maybe an analogue for lake systems that were once present on Mars. Consequently, the study of the subsurface biosphere contained in these sediments has the potential to shed light on microbial biodiversity present in this type of depositional environment. We propose to drill a total of ~1800m of poorly to semi-consolidated lacustrine, fluvial, and eolian sediments down to bedrock at a single on-shore site close to the shoreline of present-day Lake Chad. We propose to locate our drilling operations on-shore close to the site where the geotechnical Bol borehole (13°280 N, 14°440 E) was drilled in 1973. This is for two main reasons: (1) nowhere else in the Chad Basin do we have such detailed information about the lithologies to be drilled; and (2) the Bol site is close to the depocentre of the Chad Basin and therefore likely to provide the stratigraphically most continuous sequence
    corecore