2,150 research outputs found

    Phase 0 study for a geothermal superheated water proof of concept facility

    Get PDF
    A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation

    The effects of solar particle events on the middle atmosphere

    Get PDF
    Solar particle events (SPEs) have been investigated since the late 1960's for possible effects on the middle atmosphere. Solar protons from SPEs produce ionizations, dissociations, dissociative ionizations, and excitations in the middle atmosphere. The production of HO(x) and NO(x) and their subsequent effects on ozone can also be computed using energy deposition and photochemical models. The effects of SPE-produced HO(x) species on the odd nitrogen abundance of the middle atmosphere as well as the SPE-produced long term effects on ozone. Model computations indicate fairly good agreement with ozone data for the SPE-induced ozone depletion caused by NO(y) species connected with the August 1972 SPE. The model computations indicate that NO(y) will not be substantially changed over a solar cycle by SPEs. The changes are mainly at high latitudes and are on time scales of several months, after which the NO(y) drifts back to its ambient levels

    Natural Cycles, Gases

    Get PDF
    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust

    Analysis of stratospheric ozone, temperature, and minor constituent data

    Get PDF
    The objective of this research is to use available satellite measurements of temperature and constituent concentrations to test the conceptual picture of stratospheric chemistry and transport. This was originally broken down into two sub-goals: first, to use the constituent data to search for critical tests of our understanding of stratospheric chemistry and second, to examine constituent transport processes emphasizing interactions with chemistry on various time scales. A third important goal which has evolved is to use the available solar backscattered ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) data from Nimbus 7 to describe the morphology of recent changes in Antarctic and global ozone with emphasis on searching for constraints to theories. The major effort now being pursued relative to the two original goals is our effort as a theoretical team for the Arctic Airborne Stratospheric Expedition (AASE). Our effort for the AASE is based on the 3D transport and chemistry model at Goddard. Our goal is to use this model to place the results from the mission data in a regional and global context. Specifically, we set out to make model runs starting in late December and running through March of 1989, both with and without heterogeneous chemistry. The transport is to be carried out using dynamical fields from a 4D data assimilation model being developed under separate funding from this task. We have successfully carried out a series of single constituent transport experiments. One of the things demonstrated by these runs was the difficulty in obtaining observed low N2O abundances in the vortex without simultaneously obtaining very high ozone values. Because the runs start in late December, this difficulty arises in the attempt to define consistent initial conditions for the 3D model. To accomplish a consistent set of initial conditions, we are using the 2D photochemistry-transport model of Jackman and Douglass and mapping in potential temperature, potential vorticity space as developed by Schoeberl and coworkers

    Fast two-dimensional model

    Get PDF
    A two dimensional (altitude and latitude) model of the atmosphere is used to investigate problems relating to the variability of the dynamics and temperature of the atmosphere on the ozone distribution, solar cycle variations of atmospheric constituents, the sensitivity of model results to tropospheric trace gas sources, and assessment computations of changes in ozone related to manmade influences. In a comparison between two dimensional model results in which the odd nitrogen family was transported together and model results in which the odd nitrogen species was transported separately, it was found that the family approximations are adequate for perturbation scenario calculations

    A Model Study of the Impact of Source Gas Changes on the Stratosphere for 1850-2100

    Get PDF
    The long term stratospheric impacts due to emissions of CO2, CH4, N2O, and ozone depleting substances (ODSs) are investigated using an updated version of the Goddard two-dimensional (2D) model. Perturbation simulations with the ODSs, CO2, CH4, and N2O varied individually are performed to isolate the relative roles of these gases in driving stratospheric changes over the 1850-2100 time period. We also show comparisons with observations and the God- 40 dard Earth Observing System chemistry-climate model simulations for the time period 1970-2100 to illustrate that the 2D model captures the basic processes responsible for longterm stratospheric change. The 2D simulations indicate that prior to 1940, the 45 ozone increases due to CO2 and CH4 loading outpace the ozone losses due to increasing N2O and carbon tetrachloride (CCl4) emissions, so that ozone reaches a broad maximum during the 1920s-1930s. This preceeds the significant ozone depletion during approx. 1960-2050 driven by the ODS loading. During the latter half of the 21st century as ODS emissions diminish, CO2, N2O, and CH4 loading will all have significant impacts on global total ozone based on the IPCC AIB (medium) scenario, with CO2 having the largest individual effect. Sensitivity tests illustrate that due to the strong chemical interaction between methane and chlorine, the CH4 impact on total ozone becomes significantly more positive with larger ODS loading. The model simulations also show that changes in stratospheric temperature, Brewer-Dobson circulation (BDC), and age of air during 1850-2100 are controlled mainly by the CO2 and ODS loading. The simulated acceleration of the BDC causes the age of air to decrease by approx. 1 year from 1860-2100. The corresponding photochemical lifetimes of N2O, CFCl3, CF2Cl2, and CCl4 decrease by 11-13% during 1960-2100 due to the acceleration of the BDC, with much smaller lifetime changes 4%) caused by changes in the photochemical loss rates

    The \u3ci\u3eMatsucoccus\u3c/i\u3e Cockerell, 1909 of Florida (Hemiptera: Coccomorpha: Matsucoccidae): Potential pests of Florida pines

    Get PDF
    Matsucoccus krystalae Ahmed and Miller, new species, (Hemiptera: Coccomorpha: Matsucoccidae) is described based on morphological characters of adult females and third-instar males. We designate the lectotype of Matsucoccus alabamae Morrison. Matsucoccus alabamae Morrison and M. gallicolus Morrison are redescribed, also based on adult females and third-instar males. Detailed illustrations and descriptions are presented for each species and an identification key for the five species occurring in the eastern U.S. is provided. Analysis of 18S, 28S D2/D3, and 28S D10 loci were performed to support morphological determination. Barcodes using 5′ COI of M. alabamae and M. krystalae were generated, the first such data from authoritatively identified Matsucoccus species. Of particular interest is that most of the specimens in the study were taken in Lindgren funnel traps

    Ozone Depletion from Nearby Supernovae

    Get PDF
    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova must occur at <8 pc. Based on the latest data, the time-averaged galactic rate of core-collapse supernovae occurring within 8 pc is ~1.5/Gyr. In comparing our calculated ozone depletions with those of previous studies, we find them to be significantly less severe than found by Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given the amplitude of the effect, the rate of nearby supernovae, and the ~Gyr time scale for multicellular organisms on Earth, this particular pathway for mass extinctions may be less important than previously thought.Comment: 24 pages, 4 Postscript figures, to appear in The Astrophysical Journal, 2003 March 10, vol. 58

    The atmospheric effects of stratospheric aircraft: A current consensus

    Get PDF
    In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified

    Ozone Response to Aircraft Emissions: Sensitivity Studies with Two-dimensional Models

    Get PDF
    Our first intercomparison/assessment of the effects of a proposed high-speed civil transport (HSCT) fleet on the stratosphere is presented. These model calculations should be considered more as sensitivity studies, primarily designed to serve the following purposes: (1) to allow for intercomparison of model predictions; (2) to focus on the range of fleet operations and engine specifications giving minimal environmental impact; and (3) to provide the basis for future assessment studies. The basic scenarios were chosen to be as realistic as possible, using the information available on anticipated developments in technology. They are not to be interpreted as a commitment or goal for environmental acceptability
    • …
    corecore