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Abstract. Matsucoccus krystalae Ahmed and Miller, new species, (Hemiptera: Coccomorpha: Matsucocci­
dae) is described based on morphological characters of adult females and third-instar males. We designate 
the lectotype of Matsucoccus alabamae Morrison. Matsucoccus alabamae Morrison and M. gallicolus Mor­
rison are redescribed, also based on adult females and third-instar males. Detailed illustrations and 
descriptions are presented for each species and an identification key for the five species occurring in 
the eastern U.S. is provided. Analysis of 18S, 28S D2/D3, and 28S D10 loci were performed to support 
morphological determination. Barcodes using 5′ COI of M. alabamae and M. krystalae were generated, 
the first such data from authoritatively identified Matsucoccus species. Of particular interest is that most 
of the specimens in the study were taken in Lindgren funnel traps.

Key words. Distribution, southern US, taxonomy, Lindgren funnel trap, scale insects.

ZooBank registration. urn:lsid:zoobank.org:pub:803B5050-F60D-4E96-8199-7E100258A4C4

Introduction
We became interested in the Matsucoccus Cockerell, 1909 of Florida when Krystal Ashman (Florida State Col­
lection of Arthropods, Division of Plant Industry, Florida Department of Agriculture and Consumer Services) 
noticed third-instar males of an unknown species in Lindgren funnel traps set out as part of a Cooperative 
Agricultural Pest Survey (CAPS) survey in 2017. At that time, the only published record of Matsucoccus in Flor­
ida was a species identified as M. gallicolus Morrison based on a single collection. We have since determined 
that these specimens were a new species, not M. gallicolus, and are here identified as M. krystalae, new species. 
Recently Ahmed and Miller (2020) reported M. alabamae from Florida that was collected in Lindgren funnel 



2  ·  October 30, 2020 Ahmed et al.

traps. Because specimens of both species are often found in Lindgren funnel traps (Ahmed and Miller 2020) and 
because some species of the genus can cause significant damage to their pine hosts globally, we decided that it 
would be useful to study the species that occur in Florida. 

The genus Matsucoccus, commonly called pine scales, pine bast scales or matsucoccids, includes a group of 
scale insects that occur in North America, East Asia and Europe. There are 32 extant and six extinct Matsucoccus 
species, 17 (16 native and 1 invasive) are reported from the U.S. and five occur in the eastern U.S., all feed on trees 
in the Pinaceae. Herbert (1919) described Matsucoccus fasciculensis from California which was the first report 
of a Matsucoccus species in the United States. Matsucoccus matusmurae (Kuwana), a Japanese species, was later 
reported to occur in the eastern U. S. (Herbert 1921; Morrison 1928). However, it was eventually determined that 
the eastern U. S. specimens were two different species, M. alabamae Morrison and M. gallicolus Morrison (Mor­
rison 1939).

The generalized life history of Matsucoccus species is as follows (Fig. 1). Eggs are laid in an ovisac that is 
attached to the body of the adult female and to the pine host. The eggs hatch and first-instar nymphs seek out 

Figure 1. Life cycle of Matsucoccus alabamae. With two exceptions, cyst is of Matsucoccus gallicolus and 4th instar 
pupa is of Matsucoccus josephi.
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a feeding site either under bark, on new growth, or in pine-needle fascicles. Crawlers enlarge to the extent that 
the larger specimens have erroneously been labeled as second-instar nymphs (Herbert 1919; McKenzie 1943), 
but they achieve their large body size without molting (Boratynski 1952). When they molt, they transform into 
a second-instar cyst, which is legless and nearly devoid of useful characters other than large mouthparts and 
conspicuous spiracles. Matsucoccus acalyptus Herbert is an exception, having a second instar between the crawler 
and the cyst (Unruh and Luck 1987). Second-instar female cysts molt to adult females which have legs and wax 
pores, but lack mouthparts or mouthparts are rudimentary. Adult females move to exposed parts of the host, 
bend the abdomen up, and produce a pheromone (Young et al. 1980; Dunkelblum et al. 1993) that attracts the 
adult males and, in some cases, natural enemies (Mendel et al. 2004). 

Males undergo a more complicated life cycle. After molting to the third-instar nymph they develop into a 
legged instar similar in appearance to the adult female (McKenzie 1942). This instar has been called the prepupa 
(Foldi 2005). They produce a waxy sac that encloses the body and molt to the fourth-instar pupa. Unlike most 
male scale insects, some Matsucoccus species have only one pupal instar, while others have a short lived prepupa 
with small wing buds and a pupa with larger wing buds (McCambridge and Pierce 1964). This is the case for M. 
josephi Bodenheimer and Harpaz (Mendel et al. 1997). Adult males emerge from the pupal sac and seek out newly 
emerged adult females. In at least one case, it was suggested that mating must occur for the female to produce 
eggs (Ray 1982). Some populations of M. pini (Green) are reported to be parthenogenetic (Boratynski 1952), but 
others have functional adult males (Rieux 1976). Matsucoccus macrocicatrices Richards is parthenogenetic (Mech 
et al. 2013). Most Matsucoccus species have a single generation each year, while M. macrocicatrices may take two 
years to complete a generation in some populations, M. pini has one or two generations each year (Boratynski 
1952), and M. josephi may have five or six generations each year (Mendel et al. 1997).

Several species of Matsucoccus have been implicated in causing damage, even serious damage, to pines in 
many parts of the world. They include: M. acalyptus (McCambridge and Pierce 1964); M. bisetosus Morrison 
(McKenzie 1942); M. feytaudi Ducasse (Riom and Fabre 1979); M. gallicolus (Parr 1939; Aughanbaugh 1949); M. 
josephi (Mendel et al. 1997); M. massonianae Young and Hu (Young et al. 1976); M. macrocicatrices (Mech et al. 
2013); M. matsumurae (Kuwana) (McClure 1981; Shin et al. 2003); M. monophyllae McKenzie (McKenzie 1941); 
M. vexillorum Morrison (McKenzie et al. 1948); M. yunnanensis Ferris (Qi and Wang 1981). In light of significant 
economic damage caused by several species of Matsucoccus, it is important to document as much information as 
possible about the species that occur in Florida.

The purpose of this paper is to summarize the available data on the two species of Matsucoccus that presently 
occur in Florida, including line drawings of slide-mounted third-instar males and adult females; descriptions of 
third-instar males and adult females; 18S, 28S, and COI sequence data for each species; life history data; eco­
nomic importance; and distribution information.

Materials and Methods
Illustrations were made using a Leica DMRB compound microscope and a camera lucida. Terminology fol­
lows that of Morrison (1939). Numerical values were taken from a minimum of five specimens from as many 
localities as possible and include the observed range followed by the values given in Ray (1982) in parentheses. 
Roman numerals were used for abdominal segments. All specimens are deposited in the Florida State Collection 
of Arthropods, Gainesville (FSCA) unless otherwise indicated. Other depositories include: AUMNH (Auburn 
University Museum of Natural History, Auburn University, Alabama); UCDC (Bohart Museum, University of 
California, Davis); NHMUK (The Natural History Museum, London); CSCA (California Department of Food 
and Agriculture, Sacramento); USNM (United States National Museum of Natural History, scale insect collec­
tion, Beltsville, Maryland).

The Lindgren funnel trap was developed by Lindgren (1983). It is composed of a cover at the top of the trap, 
a series of vertically stacked funnels, and a bottom cup that contains propylene glycol. The traps also have lures 
that are attached to one or more of the funnels. They are held in plastic packets and are attached near the top of 
the trap, usually on funnels two through four. If there is more than one packet, they may be attached to the same 
funnel or a different one, but if on the same funnel they are placed on different sides. Lures used in traps that 
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captured Matsucoccus species were ethanol, Alpha-Pinene, and Monochamol. Traps are usually suspended from 
a tree branch, so the bottom cup is not reachable when standing on the ground (Fig. 2). This high placement is so 
that casual observers cannot easily disturb a trap. 
DNA extraction, PCR, and sequencing. Four M. krystalae (FDACS 2019-3259 and FDACS 2020-1594) and 
four M. alabamae (FDACS 2019-1868 and FDACS 2019-1869) specimens were used for DNA extraction with a 
Qiagen Blood and Tissue Kit per the manufacturer recommendations. DNA extracts were quantified on a Nano­
drop 2000 spectrophotometer and subsequent PCRs utilized an input of at least 20 ng of genomic DNA extract. 
Previous studies (e.g., Booth and Gullan 2006) have used slowly evolving ribosomal genes for molecular study of 
Matsucoccus species and populations. We targeted these same ribosomal gene regions for sequencing, while also 
targeting the standard 5′-COI barcode fragment. PCRs were set up as 25 µL reactions using Kapa HiFi HotStart 
ReadyMix kits. PCR primers and basic thermocycle conditions are listed in Table 1. All PCRs used 35 melting, 
annealing, and extension thermocycles.

Positive PCRs were purified with Qiagen QIAquick PCR Purification Kits. Purified PCR products were 
then prepared for sequencing with an Applied Biosystems BigDye Terminator v.3.1 Cycle Sequencing Kit. Bidi­
rectional sequencing was performed on the Applied Biosystems SeqStudio platform at the Division of Plant 
Industry, Florida Department of Agriculture and Consumer Services, Gainesville, Florida. Sequence traces were 
trimmed and assembled into sequence contigs in Sequencher 5.4.6 (Gene Codes Corporation). All newly gener­
ated sequence data from this study were deposited in GenBank (Table 2).
Distance and phylogenetic analyses. GenBank was datamined for 18S, 28S D2/D3 expansion region, and 28S 
D10 expansion region sequences (Table 2). Sequences from Booth and Gullan (2006) for M. gallicolus were pro­
vided to us by the authors (pers. comm. with Janie Booth, Lyn Cook, and Penny Gullan in September 2019). 
Based on the results of Vea and Grimaldi (2016), we selected the margarodid Eumargarodes laingi Jakubski as 

Figure 2. Field appearance of Matsucoccus krystalae and M. alabamae. A) Lindgren funnel trap. B) M. krystalae 
third-instar male from Lindgren funnel trap. C) M. krystalae adult female from Lindgren funnel trap. D–E) Old 
shriveled female mummies of M. alabamae with egg sacs on pine trees.
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Table 1. PCR primers and thermocycling conditions.

Gene region Primer name and sequence Primer citation A
nn

ea
lin

g 
te

m
p.

 (°
C

)

Ex
te

ns
io

n 
tim

e 
(s

)

18S 24-585 18S-2880: CTGGTTGATCCTGCCAGTAG Tautz et al. (1988) 59 45
18S-B: CCGCGGCTGCTGGCACCAGA von Dohlen and Moran 

(1995)

28S D2/D3 expansion 
region

S3660: GAGAGTTMAASAGTACGTGAAAC Dowton and Austin (1998) 58 45
A335: TCGGARGGAACCAGTCTAACTA Whiting et al. (1997)

28S D10 expansion region None: GAATGGATTAACGAGATTCTCAA Booth and Gullan (2006) 53 60
None: CACAATGATAGGAAGAGCC Dietrich et al. (2001)

COI-5′ PcoF1: CCTTCAACTAATCATAAAAATATYAG Park et al. (2010) 50 60
LEP-R1: TAAACTTCTGGATGTCCAAAAA Hebert et al. (2004)
LCO1490: GGTCAACAAATCATAAAGATATTGG
HCO2198: TAAACTTCAGGGTGACCAAAAAATCA

Folmer et al. (1994)
Folmer et al. (1994)

50 60

Table 2. GenBank accession numbers for sequences used in this study.
Species Voucher/isolate 18S 28S D2/D3 28S D10 COI
Eumargarodes laingi AMCC: 200602 KT199035 KT199058 KT199078 —
Matsucoccus alabamae 1868-1 MT621659 MT622178 MT622189 MT621224
Matsucoccus alabamae 1868-2 MT621660 MT622179 MT622190 MT621225
Matsucoccus alabamae 1869-1 MT621661 MT622180 MT622191 MT621226
Matsucoccus alabamae 1869-2 MT621662 MT622181 MT622192 MT621227
Matsucoccus krystalae 3259-1 MT621663 MT622182 MT622193 MT621228
Matsucoccus krystalae 3259-2 MT621664 MT622183 MT622194 MT621229
Matsucoccus krystalae 1594-2 MT621665 MT622184 MT622195 —
Matsucoccus krystalae 1594-5 — MT622185 MT622196 —
Matsucoccus gallicolus JMB023 MT621666 MT622186 — —
Matsucoccus gallicolus JMB024 MT621667 MT622187 — —
Matsucoccus gallicolus JMB036 MT621668 MT622188 — —
Matsucoccus macrocicatrices LGC02231 KF053072 KF040554 KF040584 —
Matsucoccus macrocicatrices LGC02229 KF053074 KF040556 KF040583 —
Matsucoccus macrocicatrices LGC02226 KF053077 KF040559 KF040582 —
Matsucoccus macrocicatrices LGC02225 KF053078 KF040560 KF040581 —
Matsucoccus macrocicatrices LGC02224 KF053079 KF040561 KF040580 —
Matsucoccus macrocicatrices LGC02221 KF053082 KF040563 KF040579 —
Matsucoccus macrocicatrices LGC02220 KF053083 KF040564 KF040578 —
Matsucoccus macrocicatrices LGC02219 KF053084 KF040565 KF040577 —
Matsucoccus macrocicatrices LGC02218 KF053085 KF040566 KF040576 —
Matsucoccus macrocicatrices LGC02217 KF053086 KF040567 KF040575 —
Matsucoccus macrocicatrices LGC02216 KF053087 KF040568 KF040574 —
Matsucoccus macrocicatrices LGC02214 KF053089 KF040570 KF040573 —
Matsucoccus matsumurae GH MH574839 — MH574783 —
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Species Voucher/isolate 18S 28S D2/D3 28S D10 COI

Matsucoccus matsumurae SC MH574840 — MH574784 —
Matsucoccus matsumurae BA MH574841 — MH574785 —
Matsucoccus matsumurae TA MH574842 — MH574786 —
Matsucoccus matsumurae PH MH574843 — MH574787 —
Matsucoccus matsumurae SU MH574844 — MH574788 —
Matsucoccus matsumurae JJ MH574845 — MH574789 —
Matsucoccus matsumurae IMA MH574846 — MH574790 —
Matsucoccus sp. IMV-2016 KT199029 KT199053 KT199072 —

Table 2. Continued.

an outgroup with appropriate data coverage for three genes (18S, 28S D2/D3, 28S D10). Sequences were aligned 
using MUSCLE (Edgar 2004), with default settings, as implemented in MEGA X (Kumar et al. 2018). The 
resulting alignments were maintained as standalone alignments for distance analyses and concatenated for phy­
logenetic analyses (553 bp 18S; 722 bp 28S D2/D3; 702 bp 28S D10; 594 bp COI). Sequences were also assembled 
and examined using SeqMan Pro ver. 7.1.0 (DNASTAR star, Inc., USA). Alignment of DNA sequences was also 
conducted online using MAFFT ver. 7 package (Katoh et al. 2019) on the server (http://mafft.cbrc.jp/alignment/
software/).

Gene sequence translation was verified in MEGA X (Kumar et al. 2018) for the presence of inframe stop 
codons and indels, which can indicate nuclear mitochondrial pseudogenes (NUMTs), generally known to be 
impediments to DNA barcoding (Song et al. 2008; Leite 2012). For the aligned dataset, phylogenetic trees were 
constructed using the neighbor joining (NJ) method algorithm with support analysis (1,000 replicates) included 
in MEGA X (Kumar et al. 2018) based on the Kimura- 2-Parameter (K2P) model. This has been the most widely 
used method for DNA barcoding analyses (e.g., Yeh et al. 1997; Shin et al. 2013; Gwiazdowski et al. 2015; Wu et al. 
2016; Amouroux et al. 2017; Kanturski et al. 2018; Song et al. 2018), including previous works on other hemipter­
ans (Lee et al. 2008; Kang et al. 2010; Katoh et al. 2013, 2014; Chen et al. 2018).To compare our results with those 
papers, we elected to use the same methodology despite some potential limitations, such as a poor fit of the K2P 
model at the species level (Srivathsan and Meier 2011; Collins et al. 2012). Pairwise distances were also computed 
using MEGA X (Kumar et al. 2018). Distance analyses were conducted to assess degree of intra- and interspecific 
divergences in 18S, 28S D2/D3, 28S D10, and COI in Matsucoccus species. Matsucoccus sequences were aligned 
without the outgroup E. laingi with the default setting of MUSCLE (Edgar 2004). K2P (Kimura 1980) distances 
were then calculated for each gene region using partial deletion of missing data with a site coverage cutoff of 95% 
in MEGA X (Kumar et al. 2018).

Maximum-likelihood analyses of the concatenated matrix were conducted in W-IQ-TREE (Trifinopoulos et 
al. 2016). The matrix was partitioned by gene (18S, 28S D2/D3, and 28S D10) and codon position (COI). The best 
fit model of sequence evolution for each partition (K2P+G4 for 18S; TN+F+G4 for 28S D2/D3; TN+F+I for 28S 
D10; HKY+F for COI first position; F81+F for COI second position; HKY+F for CO1 third position) was selected 
by ModelFinder (Kalyaanamoorthy et al. 2017) using Bayesian information criteria. Bootstrap support values 
were calculated using 100 standard ML bootstrap replicates, 10,000 ultrafast ML bootstrap replicates (Hoang et al. 
2017), and 10,000 SH-aLRT replicates (Guindon et al. 2010). Parsimony tree searches were performed in MPBoot 
(Hoang et al. 2018). Heuristic searches were conducted using default parsimony ratchet search options. Bootstrap 
analyses used the same default parsimony ratchet search options and included 10,000 bootstrap replicates. 

Results
Lindgren Funnel Traps

Lindgren funnel traps collect mobile adult females and third-instar males, but we have never recovered other 
mobile forms such as first-instar nymphs or adult males. Several observations are of interest when examining 
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these data: 1) both M. alabamae and M. krystalae have been collected in the traps, 2) only adult females of M. 
alabamae have been recovered from the traps, 3) third-instar males of M. alabamae have never been taken in the 
traps even though third-instar males of M. krystalae are the most commonly collected specimens, 4) Matsucoccus 
krystalae specimens were common in numerous traps, and 5) because there is a top on the Lindgren funnel traps, 
trapped specimens must have actively crawled into the funnels. It is unlikely that they would be windblown since 
only some instars were collected in the traps even though others are in the vicinity. 

A possible explanation for the differences in species counts in traps might be that the life history of M. 
alabamae takes place principally on the lower tree trunk, whereas that of M. krystalae apparently occurs on small 
branches and twigs higher in the tree. Lindgren funnel traps usually are attached to smaller branches of trees (the 
habitat of M. krystalae) and are not as accessible to activity of M. alabamae. Another possible explanation might 
be differential lure attractiveness between the two species. Traps captured both species across Florida.

We noticed the posterior end of the abdomen in many adult female and third-instar male M. krystalae were 
bent under the body resulting in the abdominal apex lying beneath abdominal segments IV, V, or VI. Our hypoth­
esis is that the propylene glycol in Lindgren collection cups may cause this distortion, but we have not observed 
similar distortion in M. alabamae. 

Distance Analyses
Intraspecific divergences were low for the analyzed genes (Table 3), ranging from 0% to 1.5%. Interspecific diver­
gences ranged from 1.3% (28S D10) to 14.6% (28S D2/D3).

The sequences of M. krystalae were strongly divergent for the comparable 18S and 28S D2/D3 data (Table 
3). The genetic distance of M. krystalae was 0.4–1.4% from M. gallicolus based on 18S and 28S D2/D3. COI bar­
codes have generally not been used for molecular identification of scale insects due to PCR difficulties (see Park et 
al. 2010). We report the first COI barcodes from authoritatively identified Matsucoccus species, M. krystalae and 
M. alabamae. These barcodes have a 4.3% K2P distance from each other. GenBank Blastn searches and BOLD 
identification searches yielded only one significant match (89% and 85%) to an unidentified Hemiptera specimen 

Table 3. Intraspecific and interspecific K2P distances of tested species based on following genes 18S rDNA /28S 
D2/D3 rDNA /28S D10 rDNA/COI.

Species Mean (%) Min (%) Max (%)
Intraspecific K2P distances
M. krystalae 0.0/0.04/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.15/0.0/0.0
M. gallicolus 0.0/0.04/NA/NA 0/0/0.0/NA/NA 0/0.15/NA/NA
M. alabamae 0.04/0.22/0.0/0.0 0/0.15/0.0/0.0 0.19/0.29/0.0/0.0
M. marcocicatrices 0.0/0.0/0.03/NA 0.0/0.0/0.0/NA 0.0/0.0/0.34/NA
M. matsumurae 0.0/NA/0.0/NA 0.0/NA/0.0/NA 0.0/NA/0.0/NA

Interspecific K2P distances
M. krystalae–M. gallicolus 0.4/1.4/NA/NA 0.4/1.3/NA/NA 0.4/1.5/NA/NA
M. krystalae–M. alabamae 2.4/8.8/1.3/4.4 2.2/8.0/1.2/4.3 2.4/8.8/1.4/4.5
M. krystalae–M. marcocicatrices 3.7/13.0/5.0/NA 3.6/12.8/5.0/NA 3.7/13.2/5.1/NA
M. krystalae–M. matsumurae 6.5/NA/8.1/NA 6.4/NA/8.0/NA 6.6/NA/8.1/NA
M. gallicolus–M. alabamae 2.2/9.0/1.3/NA 2.1/8.8/NA/NA 2.3/9.2/NA/NA
M. gallicolus–M. marcocicatrices 3.7/13.0/NA/NA 3.6/12.8/NA/NA 3.8/13.3/NA/NA
M. gallicolus–M. matsumurae 6.9/NA/NA/NA 6.6/NA/NA/NA 6.9/NA/NA/NA
M. alabamae–M. marcocicatrices 3.2/11.5/5.5/NA 3.2/11.4/5.4/NA 3.2/11.6/5.6/NA
M. alabamae–M. matsumurae 5.3/NA/7.6/NA 5.2/NA/7.5/NA 5.4/NA/7.7/NA
M. marcocicatrices–M. matsumurae 1.5/NA/1.6/NA 1.4/NA/1.4/NA 1.6/NA/1.6/NA
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(BIOUG11208-B11; BIN BOLD:ACM6572) from Nova Scotia, Canada. Based on the images of the male specimen, 
we identified it as a Matsucoccus species, most likely M. macrocicatrices (pers. comm. with Jayme Sones, June 2020). 

Phylogenetic Analyses
A total of 22 aligned sequences for 18S and 28S D2/D3 rDNA (Fig. 3) and 570 bp and 725 bp sequence fragments 
respectively with outgroups were analyzed (Table 2). All four Matsucoccus species are characterized by a distinc­
tive set of 18S and 28S D2/D3 rDNA sequences that form well-supported clusters in the NJ-trees (bootstrap 
values of 96–100%; Fig. 3–4). Three populations of northern M. gallicolus show no significant divergence from 
each other based on both 18S and 28S D2/D3 rDNA (Fig. 3–4) and clustered in a separate well-supported sub­
clade sister to M. krystalae.

MPBoot heuristic tree searches recovered most parsimonious trees of score 657 steps. Analyses of the con­
catenated matrix recovered two nodes that where strongly supported by all resampling tests (>80 standard ML 
bootstrap; >95 UF ML bootstrap; >95 UF MP bootstrap; >80 SH-aLRT) (Fig. 5). An additional five nodes were 
strongly supported by some, but not all resampling tests (Fig. 5). One of these moderately supported nodes forms 
a clade of M. krystalae + M. gallicolus. No other sister relationships between Matsucoccus species were strongly 
supported in these analyses. 

Taxonomy

Key to Matsucoccus species from the eastern U.S. based on adult females
1.	 Venter with two sizes of setae; setae anterior of hind coxae and in medial areas of abdomen noticeably 

longer than other ventral setae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          2
—	 Venter with one size of ventral setae; setae anterior of hind coxae approximately same length as other 

ventral setae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               M. alabamae Morrison (Fig. 6)

2(1). 	 Cicatrices present on metathorax or abdominal segment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      4
—	 Cicatrices absent from metathorax and abdominal segment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   3

3(2).	 Cicatrices present in four rows on abdominal segments III–VI; cicatrices greater than 15 µm in diameter; 
with less than 100 cicatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    M. macrocicatrices Richards

—	 Cicatrices present in five rows on abdominal segments II–VI; cicatrices less than 15 µm in diameter; with 
more than 100 cicatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        M. matsumurae (Kuwana) 

4(2).	 With 20–32 multilocular pores; with 170–378 cicatrices; cicatrices in medial and mediolateral areas, but 
not in lateral areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          M. gallicolus Morrison (Fig. 10)

—	 With 36–72 multilocular pores; with 437–900 cicatrices; cicatrices in medial, mediolateral, and lateral 
areas on some segments . . . . . . . . . . . . . . . .                  M. krystalae Ahmed and Miller, new species (Fig. 12)

Matsucoccus alabamae Morrison, 1939
(Fig. 6–7)

Matsucoccus matsumurae (Kuwana); Herbert 1921: 15; Morrison 1928: 3. misidentification (Morrison 1939: 13). (in part; 
also see M. gallicolus).

Matsucoccus alabamae Morrison 1939: 2. Accepted valid name. 

Adult Female
(Fig. 6)
Diagnosis. Cicatrices usually in four rows, anterior row narrower than remaining rows; body setae all about same 
size; vulva present near posterior end of abdomen; fleshy setae present on distal four antennal segments.
Description. Body elongate, parallel sided, 4.0–6.9 (4.4–6.7) mm long, 1.8–2.2 (1.8–2.2) mm wide. Dorsum: 
Setae uncommon, inconspicuous, arranged in rows, of one size, 8–10 (7–11) µm long. Bilocular tubular ducts 
scattered over surface, uncommon on head and within rows of cicatrices; tubes sometimes slightly divergent. 
Cicatrices in four rows on segments III to VI, rarely with cicatrices in small numbers on segments II and/or VII; 
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Figure 3. Neighbor-joining trees based on Kimura 2-Parameter genetic distance based on 18S rDNA. Bootstrap 
support values are shown at the branch points and are based on 1,000 replications. Support values labeled with 
“-” have support lower than 50%.
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Figure 4. Neighbor-joining trees based on Kimura 2-Parameter genetic distance based on 28S D2/D3 rDNA. 
Bootstrap support values are shown at the branch points and are based on 1,000 replications.
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Figure 5. Bootstrap consensus tree from W-IQ-TREE analysis. Node support values from left to right are stan­
dard ML bootstrap, ultrafast ML bootstrap, ultrafast MP bootstrap, and SH-aLRT. Support values labeled with a 
“*” have 100% support. Support values labeled with “-” have support lower than 50%. Support values with a “--” 
indicate that node was not recovered by an analysis. Numbers in parentheses indicate the number of individuals.
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Figure 6. Matsucoccus alabamae Morrison. Adult female. Duval Co., Florida 9A, West of Yellow Bluff Fort Historic 
State Park, Jacksonville, Florida, November 1, 2018, on Pinus sp., M. Lara. A) Antenna. B) Thoracic spiracle. C and 
H) Short ventral filamentous seta. D) Hind tibia. tarsus, claw. E) First abdominal spiracle. F) last abdominal spir­
acle. G) Multilocular pore. I) Dorsal filamentous seta. J) Dermal pattern. K) Bilocular tubular ducts. L) Cicatrix.
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anterior row on segment III usually about half as wide as other rows; with 223–370 (95–511) cicatrices; largest 
8–11 (9–14) µm in diameter. 

Venter. Setae uncommon, arranged in rows, of one size 8–10 (7–11) µm long, over most of surface; longest 
seta anterior of hind coxae 10–16 µm long. Bilocular tubular ducts arranged segmentally, uncommon on head, most 
abundant on margin; similar in size and shape as on dorsum. Multilocular pores in cluster surrounding vulva at, 
or near, abdominal apex; with 42–64 (44–88) pores; diameter of largest pore 8–11(11–15) µm. Thoracic spiracles 
without definite sclerotized rim on derm; posterior spiracle with largest diameter of atrium 32–49 (33–48) µm; with 
seven pairs of abdominal spiracles, normally with dermal orifice sclerotized, all equally sclerotized and about same 
size, diameter of sclerotized dermal orifice of first abdominal spiracle 13–20 (15–22) µm, of seventh spiracle 17–20 
(14–17) µm. Legs large and conspicuous, with scale-like pattern on all segments except first tarsal segment; hind 
trochanter with one (rarely two) long seta, 7–11 (10–12) sensoria; femur 228–290 (274–309) µm long, with 12–18 
(8–22) setae; tibia 220–255 (242–321) µm long, with 31–38 (25–41) setae; tarsus (both segments) 150–172 µm long, 
tarsal digitule undifferentiated; claw without denticle, with two conspicuous digitules, equal in size. Antennae nine 
segmented, 0.7–0.8 (0.7–0.8) mm long; apical four segments each with two enlarged setae; first segment 135–165 
(131–168) µm long, 165–210 (148–226) µm wide, with 2–4 setae on ventral surface, 16–24 setae on dorsal surface; 
second segment 115–125 (111–136) µm long, 100–130 µm wide, with 4–9 setae on ventral surface, 6–10 setae on 
dorsal surface. Anterior apex of vulva lying under anterior apex of abdominal segment VIII on dorsum.
Remarks. For a comparison of this species with M. gallicolus see the notes section of the latter. This species is very 
similar to M. banksianae Ray and Williams, but the latter differs (characters in parentheses are of M. alabamae) 
by having 3, 4, or 5 rows of cicatrices (four rows), and occurs on Pinus banksiana Lamb. in Minnesota (occurs on 
Pinus elliottii Engelm., P. taeda L., and P. rigida Mill. in the southeastern U.S.). The above description is based on 
14 specimens from seven localities.

Third-instar Male
(Fig. 7) 
Diagnosis. One size of seta on venter, setae anterior of metacoxae 8–11 µm long; with eight or fewer bilocular 
tubular ducts on dorsum of abdominal segment III; developing genitalia at posterior end of abdomen; abdominal 
spiracles usually similar in size; fleshy setae present on distal four antennal segments.
Description. Body elongate, parallel sided, 2.5–2.9 mm long, 0.9–1.2 mm wide. Dorsum: Setae uncommon, 
inconspicuous, arranged in rows, of one size, 8–12 µm long. Bilocular tubular ducts scattered over surface, in 
segmental rows, associated with setal rows, arranged in longitudinal lines with lines present submedially, medio­
laterally, and laterally, with six or seven ducts on abdominal segment III, tubes sometimes slightly divergent. 

Venter. Setae uncommon, arranged in rows, of one size 8–10 µm long, over most of surface; longest seta 
anterior of hind coxae 10–16 µm long. Bilocular tubular ducts uncommon on head and medial areas of thorax, 
most abundant on margin, arranged in longitudinal lines, present submedially and laterally; similar in size and 
shape as on dorsum. Thoracic spiracles without definite sclerotized rim on derm; posterior thoracic spiracle with 
largest diameter of atrium 24–29 µm; with seven pairs of abdominal spiracles, normally with dermal orifice scler­
otized, all equally sclerotized and about same size, diameter of sclerotized rim of dermal orifice of first abdominal 
spiracle 10–15 µm, of seventh spiracle 10–11 µm. Legs large and conspicuous, with scale-like pattern on all seg­
ments except first tarsal segment; hind leg with trochanter with one long seta, 8–13 sensoria; femur 170–195 µm 
long, with 16–21 setae; tibia 170–205 µm long, with 27–41 setae; tarsus (both segments) 100–120 µm long, tarsal 
digitule undifferentiated; claw without denticle, with two conspicuous digitules, equal in size. Antennae nine 
segmented, 0.5–0.8 mm long; apical four segments each with two enlarged setae; first segment 110–120 µm long, 
110–160 µm wide, with 0–4 setae on ventral surface, 12–23 setae on dorsal surface; second segment 75–90 µm 
long, 95–125 µm wide, with 4–6 setae on ventral surface, 3–6 setae on dorsal surface, three or four sensilla on 
dorsal surface. Developing genitalia near posterior end of body.
Type material. Type data: USA: Alabama, Calhoun, on Pinus sp., March 16 and 31, April 21, 1902; collected by 
A.M. Troyer. Syntypes, female and first instar. Because Morrison (1939) did not specifically mention a holotype 
in the original description, the lectotype, designated here, is the single mounted adult female from the syntype 
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Figure 7. Matsucoccus alabamae Morrison. Third-instar male. Lee Co., Auburn, Alabama, March 1, 1979, on 
Pinus echinata, C.H. Ray, Jr. and I. Daniels. A) Seventh and eighth antennal segments. B) Basal antennal seg­
ments. C) Thoracic spiracle. D and G) Short ventral filamentous seta. E) Hind tibia, tarsus, claw. F) Abdominal 
spiracle. H) Bilocular tubular ducts. I) Dorsal filamentous seta. J) Dermal pattern.
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series mounted on a slide and labeled as follows: left label: “9582 Matsucoccus/ alabamae/ Holotype/ On pine/ 
Calhoun, Ala./ March 16, 1902” right label “Matsucoccus/ alabamae/ Morrison/ lectotype/ desig. by Ahmed et 
al. 2020” (deposited at USNM). In addition, there are 14 paralectotypes. Type depositories: AUMNH, UCDC, 
USNM. We have examined the lectotype and several of the paralectotypes deposited in AUMNH and USNM.
Remarks. For a comparison of M. alabamae with M. krystalae see the notes section of the latter. The above 
description is based on seven third-instar males from the following locality: Lee County, Auburn, Alabama, 
March 1, 1979, on Pinus sp., C.H. Ray and I. Daniels, deposited in AUMNH.
Life history. The following information is from Ray (1982) based on observations made in Auburn, Alabama 
from November 1978 to April 1981. This species overwinters in the second-instar cyst beneath bark scales on the 
trunk of the host. In March, the third-instar males emerge from cysts, settle beneath bark scales and produce a 
waxy sac in which they molt to the fourth-instar pupa. Adult males emerge and begin to actively seek out females. 
Adult females emerge from the cyst, move to the outer surfaces of the tree trunk or between the edges of bark 
scales and extend the posterior end of their abdomen as far from the trunk as possible. Adult males run rapidly 
up and down the trunk and orient to the posterior apex of the female and copulate. After copulation is complete, 
adult females crawl beneath loose bark flakes, near a scar, or at the base of a branch and produce a waxy ovisac in 
which 501–860 eggs are laid. Copulation is necessary for oviposition: confined females do not produce eggs. As 
females deposit eggs, their bodies contract and fold so that when all eggs are deposited, the females are reduced 
to less than 1/3 of their original size.
Material examined. Alachua Co., Gainesville, behind Division of Plant Industry, (Long. 29.634987, Lat. 
−82.371138) September 6, 2018, on Pinus elliottii, M. Ahmed (dead mummy) (2018-4724) 3 ad. ♀; Broward 
Co., Ft. Lauderdale (Lat. 26.20512, Long. −80.1698), April 26, 2018, on Pinus sp., (Lindgren trap), J. Farnum 
(2018-2743) 2 ad. ♀; Duval Co., Jacksonville, Port of Jacksonville, Florida 9A, (Lat. 30.39461, Long. −81.58198), 
December 7, 2017, on Pinus sp., (Lindgren trap), M. Lara, (2018-1002) 1 ad. ♀; Jacksonville, Port of Jacksonville, 
November 1, 2017, on Pinus sp., (Lindgren trap), M. Lara, (2018-609) 1 ad. ♀ [we are unable to authenticate the 
location of these records; the official GPS coordinates of the closest trap are Lat. 30.394678, Long. −81.562037]; 
Franklin Co., Lanark Village, January 31, 2018, on Pinus sp., S. Halbert, M. Ahmed, D. Miller (dead mummy) 
(2018-343) 5 ad. ♀; Highlands Co., Archbald Research Station, April 28, 1975, on Pinus elliottii, R. Denno, J. 
Davidson, D. Miller 5 ad. ♀ (USNM); Liberty Co., US 27 N, January 31, 2018, on Pinus sp., S. Halbert, M. Ahmed, 
D. Miller (dead mummy) (2018-346) 1 ad. ♀; Miami-Dade Co., Miami, December 25, 1978, on Pinus elliottii, C. 
Ray 6ad. ♀ (AUMNH); Miami-Dade Co., Miami, July 20, 1980, on Pinus elliottii, C. Ray 2 ad. ♀ (AUMNH); Oka­
loosa Co., Niceville, February 17, 1979, on Pinus elliottii, C. Ray 8 ad. ♀ (AUMNH); Palm Beach Co., Magnolia 
Park (Lat. 26.76042, Long. −80.07526), November 19, 2018, on Pinus sp., (Lindgren trap), J. Farnum (2019-181) 
1 ad. ♀; Wakulla Co., Apalachicola National Forest, January 16, 1997, on Pinus palustris, W. Tschinkel (97-0195) 
8 second instar cysts (Fig. 8). 
Distribution outside of Florida. Matsucoccus alabamae was known only from Alabama but Ray (1982) reported 
it from Florida, Georgia, South Carolina, and Tennessee in his unpublished dissertation. Recently Ahmed and 
Miller (2020) reported it from Florida and confirm the Florida occurrence data herein. A new record for Virginia 
is provided by DRM follows: Bayville Farms Park, Virginia Beach, Virginia December 24, 2019, under bark of 
Pinus taeda, D. R. Miller (2020-25).
Damage. This species has not been implicated in causing economic damage.

Matsucoccus gallicolus Morrison, 1939
(Fig. 9–10) 

Matsucoccus matsumurae (Kuwana); Herbert 1921: 15. misidentification (Morrison 1939: 9–13) (in part; also see M. 
alabamae).

Matsucoccus sp.; Parr 1939: 624–630.
Matsucoccus gallicolus Morrison 1939: 9. Accepted valid name. 
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Figure 8. Florida distribution of Matsucoccus krystalae (solid circle) and M. alabamae (open circle).

Adult Female
(Fig. 9)
Diagnosis. Cicatrices numbering less than 310, present on segment I to segment VI; cicatrices absent from near 
body margin; with fewer than 30 multilocular pores; body setae of two distinct sizes; fleshy setae present on distal 
four antennal segments.
Description. Body elongate, parallel sided, 2.2–4.5 mm long, 1.0–2.7 mm wide. Dorsum: Setae uncommon, 
inconspicuous, arranged in rows, of one size, 5–8 µm long. Bilocular tubular ducts scattered over surface, uncom­
mon on head and within rows of cicatrices; tubes usually slightly divergent. Cicatrices on segment I–VI; cicatrices 
present in medial and mediolateral areas, absent near body margin; some anterior segments with separate rows 
on anterior and posterior sections, anterior rows usually with fewer cicatrices; with 170–378 cicatrices; largest 
6–12 µm in diameter. 
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Venter. Setae uncommon, arranged in rows, of two sizes, smaller setae 5–12 µm long, over most of surface; 
longest seta anterior of hind coxae 40–55 µm long, longer setae also present in medial areas of abdominal seg­
ments. Bilocular tubular ducts arranged segmentally, uncommon on head, most abundant on margin; similar 
in size and shape as on dorsum or slightly smaller. Multilocular pores in cluster around vulva, most specimens 
with ventral vulva located at or near abdominal apex; with 20–32 multilocular pores; diameter of largest pore 
9–15 µm. Thoracic spiracles without definite sclerotized rim on derm or with narrow band of sclerotization; 
posterior spiracle with largest diameter of atrium 22–30 µm; with seven pairs of abdominal spiracles, normally 
with dermal orifice sclerotized, more weakly sclerotized posteriorly, sometimes decreasing in size posteriorly, 
diameter of dermal orifice of first abdominal spiracle 12–18 µm, of seventh spiracle 8–20 µm. Legs large and 
conspicuous, with scale-like pattern on all segments except first tarsal segment; hind leg with trochanter with 
one long seta, 7–10 sensoria; femur 190–260 µm long, with 8–18 setae; tibia 172–310 µm long, with 22–40 setae; 
tarsus (both segments) 115–170 µm long, tarsal digitule undifferentiated; claw without denticle, with two con­
spicuous digitules, equal in size. Antennae nine segmented, 0.4–0.9 mm long; apical four segments each with 
two enlarged setae; first segment 100–155 µm long, 90–160 µm wide, with 5–8 setae on ventral surface, 18–31 
setae on dorsal surface; second segment 62–100 µm long, 75–100 µm wide, with 5–8 setae on ventral surface, 
5–8 setae on dorsal surface.
Material examined. Alabama, near Birmingham, April 13, 1929, on Pinus virginiana, E.J. Palmer (35332) 1 adult 
♀ (paratype). Connecticut: New Haven, received October 26, 1937, on Pinus rigida, R.C. Brown, 3 adult ♀. Geor­
gia: St. Mary’s River, May 1, 1921, on Pinus glabra, unknown collector (39 1510), 3 cysts, 1 adult ♀ (paratype). 
Maryland: Beltsville, received September 23, 1946, on Pinus rigida, St. George (Hopkins 34109), 3 adult ♀; Berlin, 
September 20, 1970, on Pinus taeda, D.R. Miller, 5 adult ♀; Cambridge, March 14, 1971, on Pinus taeda, D.R. 
Miller, 3 adult ♀. Massachusetts: Amherst, June 9, 1946, on Pinus rigida, W.B. Becker, (46 795) 4 adult ♀; Cape 
Cod, November 5, 1935, on Pinus rigida, W. Becker, 1 adult ♀ (paratype); Sandwich, June 9, 1916, on Pinus rigida, 
Fernald and Hun, 4 adult ♀ (paratype). Missouri: near Tecumseh, N. fork of White River, Ozark Co., October 7, 
1927, on Pinus echinata, E.J. Palmer (30893) 1 adult ♀, 1 cyst (paratype). New Hampshire: Nashua, May 27, 1937, 
on Pinus rigida, T. Parr, 3 adult ♀, 3 cysts, 1 first-instar nymph (paratype). New Jersey: between Tom’s River and 
Tuckerton, February 18, 1937, on Pinus rigida ?, Mr. May, 2 adult ♀; Barnegat, July 22, 1936, on Pinus rigida, R.R. 
Whitten, 2 adult ♀. New York: Centerport, December 1, 1919, on Pinus rigida, J.T. Morton, (Hopkins 16404A) 1 
adult ♀ (paratype); Centerport, August 25, 1919, on Pinus rigida, L.C. Griffith, 1 adult ♀, 2 cysts (paratype); Great 
River, September 25, 1953, on Pinus rigida, G.V. Johnson (T.C. # 116) 2 adult ♀, 6 cysts. North Carolina: Ash­
ville, May 8, 1937, on Pinus rigida or P. echinata, B.H. Wilford, (39 1506) 2 adult ♀ (paratype). Ohio: Delaware, 
received for identification December 2, 1970, on Pinus rigida, J.B. Hanson (70-23862), 4 adult ♀; Pennsylvania: 
State Forest Park, Mont Alto, September 1935, on Pinus rigida, J. C. Kase, 1 ad ♀, 3 first-instar exuviae, 3 cysts 
(paratype); Mont Alto, September 18, 1935, on Pinus rigida, J. C. Kase, 1 adult ♀ (paratype); Mont Alto, Januaruy 
30, 1937, on Pinus echinata, collector unknown, 5 adult ♀, 1 3rd ♂ (paratype); Mont Alto, Guilford Turnpike, 
March 1937, on Pinus rigida, J. C. Kase, 1 adult ♀ (paratype); South Carolina: Cooper River, Charleston, April 
4, 1909, on Pinus taeda, J.G. Sanders, 1 3rd ♂. Virginia: Falls Church, Franklin Park, April 20, 1936, on Pinus 
virginiana, I. Weckerly, 2 adult ♀, 2 cysts (paratype); Glouchester, unknown location, January 5, 1968, on Pinus 
virginiana (witches broom) C.L. Morris, 1 adult female; Gouchland County, locality unknown, on pine, collector 
unknown 1 3rd ♂; Princess Anne County, May 1898, on Pinus taeda, T.H. Kearney, Jr., (USNM 355800), 1 adult 
♀, 1 cyst (paratype); Rockbridge County, October 31, 1941, on Pinus rigida, M.C. Howard (41 2603), 5 adult ♀, 
3 cysts. Washington, D.C., Good Hope Hill, March 19, 1905, on Pinus virginiana, J.G. Sanders, 1 adult ♀; Good 
Hope Hill, May 11, 1936 & March 19, 1905, on Pinus virginiana, L.M. Russell (39 1498), 7 adult ♀.
Remarks. Adult females of M. gallicolus can be separated from adult females of M. krystalae (characters in paren­
theses are of M. krystalae) as follows: With 170–378 cicatrices (437–900); cicatrices absent from marginal areas 
(marginal cicatrices present on one or more of segments IV–VI); with 20–32 multilocular pores (36–72); vulva 
and multilocular pores usually at or near posterior apex of abdomen (many specimens with vulva and multilocu­
lar pores located under dorsum of segment IV or V).

The above description is based on 52 specimens from 23 localities.
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Figure 9. Matsucoccus gallicolus Morrison. Adult female. Prince Georges Co., Beltsville, Maryland, September 
23, 1946, on Pinus sp., Hopkins No., 34109. A) Antenna. B) Thoracic spiracle. C) Short ventral filamentous seta. 
D) Long ventral filamentous seta. E) Hind tibia, tarsus, claw. F) Abdominal spiracle. G) Multilocular pore. H) 
Dorsal filamentous seta. I) Cicatrix. J) Bilocular tubular ducts. K) Middle leg folded after emergence through the 
exit hole in the gall, L–M) Antennae at two stages of elongation after emergence through the exit hole in the gall.
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Third-instar Male
(Fig. 10)
Diagnosis. Two sizes of setae on venter, setae anterior of metacoxae about 20 µm long, marginal setae about 5 
µm long; with less than eight bilocular tubular ducts on dorsum of abdominal segment III; abdominal spiracles 
usually decreasing in size posteriorly; fleshy setae present on distal four antennal segments.
Description. Body elongate, 1.1–1.9 mm long, 0.7–1.1 mm wide. Dorsum: Setae uncommon, inconspicuous, 
arranged in rows, of one size, about 5 µm long. Bilocular tubular ducts scattered over surface, in segmental rows, 
associated with setal rows, not arranged in longitudinal lines; with less than eight ducts on abdominal segment 
III, tubes fused. 

Venter. Setae uncommon, arranged in rows, of two sizes, larger 18–20 µm long, smaller about five µm long; 
longest seta anterior of hind coxae about 20 µm long. Bilocular tubular ducts uncommon on head and medial 
areas of thorax, most abundant on margin, arranged in longitudinal lines, present submedially and laterally; 
similar in size and shape as on dorsum, of two variable sizes. Thoracic spiracles without definite sclerotized rim 
on derm; posterior thoracic spiracle with largest diameter of atrium 15–25 µm; with seven pairs of abdominal 
spiracles, normally with dermal orifice sclerotized, all equally sclerotized, normally decreasing in size posteriorly, 
diameter of sclerotized rim of dermal orifice of first abdominal spiracle 12–17 µm, of seventh spiracle 6–10 µm. 
Legs large and conspicuous, with scale-like pattern on all segments except first tarsal segment; hind leg with 
trochanter with one long seta, sensoria hidden by bend; femur 125–195 µm long, with 4–7 setae; tibia 92–177 
µm long, with 20–32 setae; tarsus (both segments) 77–102 µm long, tarsal digitule undifferentiated; claw without 
denticle, with two conspicuous digitules, equal in size. Antennae nine segmented, 0.4 mm long; apical four seg­
ments each with two enlarged setae; first segment 100 µm long, 88 µm wide, with two setae on ventral surface, 
12 setae on dorsal surface; second segment 50 µm long, 67 µm wide, with three setae on ventral surface, three 
setae on dorsal surface, four sensilla on dorsal surface. Ventral developing genitalia located near posterior apex 
of abdomen.
Type material. Type data: USA: Pennsylvania, Stroudsburg, farm of Mrs. E. Bethel, on Pinus rigida, April 1936, 
collected E.C. Pyle. Holotype, female, Type depository: Washington: United States National Entomological Col­
lection, U.S. National Museum of Natural History, District of Columbia, USA (USNM). Accepted valid name. We 
have examined the holotype and several of the paratypes. There is a long series of paratypes from many eastern 
states.
Remarks. Third-instar males of M. gallicolus can be separated from M. krystalae (characters in parentheses are of 
M. gallicolus) as follows: 10 or more bilocular tubular ducts on dorsum of abdominal segment III (fewer than 8). 
Third-instar males of M. gallicolus can be separated from M. alabamae (characters in parentheses are of M. gal-
licolus) as follows: setae anterior of hind coxa and in medial area of abdomen about same size as other body setae 
(setae in these areas conspicuously longer than other body setae).

The above description is based on three third-instar males from three localities. The specimens used for this 
description are in poor condition; some still have their antennae and legs compacted in dermal pockets causing 
many of the characters to be difficult to discern.
Life history. The following information is from Parr (1939). The species overwinters as eggs in the ovisac which 
are usually located under the bark on branches of the pine host. Hatching occurs in late April in Connecticut and 
Pennsylvania when the new growth on the pine terminals is one to three inches long. Immediately after hatching 
the dark yellow crawlers move to the new growth, insert their mouthparts, and begin feeding. After continued 
feeding, the body of the crawler gradually turns dark brownish black and the integument around the mouthparts 
begins to swell. There is concomitant degradation of plant tissue around the base of the stylets and the ventral 
surface of the crawler sinks into the cavity in the plant. There also is slight swelling of the plant tissue around the 
outside of the crawler that continues until the body of the crawler is almost completely enclosed. After six to nine 
weeks from hatching, the crawler molts to the second-instar cyst. The shed skin of the crawler is usually trapped 
in the hole in the epidermis of the plant and the cyst is totally encapsulated in plant tissue except for the hole 
where the shed skin of the crawler is placed. The brownish black cyst is nearly round, legless, with large spiracular 
openings, and mouthparts. The second molt occurs about a month later. Emergent adult females have legs, but 



20  ·  October 30, 2020 Ahmed et al.

Figure 10. Matsucoccus gallicolus Morrison. Third-instar male. Cooper River, Charleston, South Carolina, April 
4, 1909, on Pinus taeda, S.G. Sanders. A) Apical four antennal segments. B) short filamentous seta. C) Thoracic 
spiracle. D) Hind tibia, tarsus, and claw. E) 1st abdominal spiracle. F) Long filamentous seta. G) 6th abdominal 
spiracle. H) Bilocular tubular ducts. I) Short dorsal filamentous seta.
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mouthparts are lacking or nonfunctional. Immediately after emerging from the cyst, the adult female integument 
is very flexible, and the legs and antennae are telescoped inside the body (Fig. 9). The adult female pushes the 
shed skin of the crawler aside and squeezes through the small opening of the gall. Adult females settle under bark 
flakes on the main branches or trunk of the host, produce an oval flattened pad of wax that is covered by white 
wax threads, and lay 150–500 lemon yellow eggs. There is no discussion of males in any stage in Parr (1939) but 
Morrison (1939) discussed the existence of second and third-instar males when he described the species.

It is not entirely clear that this species has the same life history as that suggested by Parr (1939) in other parts 
of its distribution. We have examined the dates of collection of all adult females deposited in the U. S. National 
Museum scale-insect collection in Beltsville, Maryland, and find specimens from every month of the year except 
August (Table 4). We excluded any specimens that appeared to have been mummies when they were collected. 

As indicated above, Parr (1939) suggested that the legs and antennae are telescoped inside the body while 
pushing through the hole in the host. It appears to us that they are external but are in pockets in the derm. In 
either case, they are folded in specific ways. Each antenna is oriented posteriorly and is folded at segment three 
with the distal segments resting under or within the much longer two basal segments. The third segment is bent 
when the antenna is folded (Figure 9). Each leg is oriented with the claw and tarsus anterior of the tibia and femur. 
The trochanter is bent in the middle and is attached to the coxa which lies under the rest of the leg (claw, tarsus, 
tibia, femur and part of the trochanter) (Figure 9). There is a definite division in the middle of the trochanter in 
fully extended legs, which suggests it is folded during emergence.
Florida distribution. We have examined the specimens reported by Morrison (1939) from Florida that are 
deposited in the USNM. They are either cysts or first instars and we are unable to verify their identity without 
examination of associated adult females or third-instar males. The cysts of M. gallicolus are different from all 
other species treated by Morrison in 1939 based on the protrusion on the dorsum used by the adult female and 
third-instar male to escape the gall, but we suspect that M. krystalae has the same characteristics. Because identifi­
able specimens of M. gallicolus have not been collected in Florida, we suspect that the Florida records are actually 
of M. krystalae.
Distribution outside of Florida. Matsucoccus gallicolus Morrison has been reported from Connecticut, District 
of Columbia, Georgia, Kentucky, Maine, Maryland, Massachusetts, Missouri, New Hampshire, New Jersey, New 
York, North Carolina, Ohio, Pennsylvania, Rhode Island, Tennessee, and Virginia. We examined a specimen from 
Alabama and Ray (1982) reported it from South Carolina. 

Table 4. Collection month, number and US states and territories of adult females of Matsucoccus gallicolus in 
Smithsonian National Museum of Natural History collection. Connecticut – CT, Delaware – DE, District of Co­
lumbia – DC, Georgia – GA, Maryland – MD, Massachusetts – MA, Missouri – MO, New Hampshire – NH, New 
Jersey – NJ, New York – NY, North Carolina – NC, Pennsylvania – PA, Tennessee – TN, Virginia – VA.

Month Total CT DC DE GA MA MD MO NC NH NJ NY PA TN VA
January 2 x x
February 2 x x
March 3 x x x
April 3 x x x
May 6 x x x x x x
June 2 x x
July 2 x x
August 0
September 3 x x x
October 4 x x x x
November 1 x
December 2 x x
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Damage. Parr (1939) did a careful analysis of the effect of the feeding of M. gallicolus on host tissue in Con­
necticut and Pennsylvania. About two weeks after a crawler begins feeding, a slight yellowing of the twig surface 
develops around the insect body where it is in contact with the host. Normal epidermal and collenchyma cells 
outside of the feeding area have heavy walls but those in the area of feeding become thin walled, empty and stop 
growing. This causes the formation of a depression under the insect and this combined with abnormal growth 
of the epidermal and collenchyma cells surrounding the body of the crawler causes gall formation. By the end of 
June, the cells under the insect have lignified and this degradation continues until late August when twig death 
may occur. On pitch pine an infestation of 1.2 insects per square millimeter will cause twig death by the middle 
or end of July but an infestation of 0.5 insects per square millimeter will cause death of the twig by late August or 
September. Parr was able to demonstrate that the saliva from the feeding insect was the source of gall induction 
by the plant.

According to Aughanbaugh (1949) a quarter acre plot was set up in a pitch pine (Pinus rigida Mill.) planta­
tion in Pond Bank, Pennsylvania in 1931. At the time the trees seemed healthy containing about 40 cubic feet of 
wood per acre. The following table is a synopsis of the tables presented by Aughanbaugh (1949) of the damage 
sustained by trees in the plot for the next several years (Table 5).

Aughanbaugh (1949) suggested that the annual increment accumulated in 1942 of trees at the early age of 
23 years demonstrated the serious damage sustained by the trees. Only 652 trees were alive in 1949 (48%) and it 
seemed doubtful that they would ever attain timber size. Damage can be recognized by trees with dead leaders 
or branches as the season progresses.

Matsucoccus krystalae Ahmed and Miller, new species
(Fig. 11–12)

Matsucoccus gallicolus Morrison 1939: 12 (in part). Possible misidentification of paratype specimens taken from her­
barium specimens from Pinus glabra Walter, Chattahoochee, Florida, November, unknown date, A. H. Curtiss. 

Adult Female
(Fig. 11)
Diagnosis. Cicatrices numbering more than 400, normally present on metathorax to segment VI, occasionally 
absent from metathorax; cicatrices present near body margin on one or more posterior abdominal segments; 
with more than 35 multilocular pores; body setae of two distinct sizes; fleshy setae present on distal four antennal 
segments.
Description. Body elongate, parallel sided, 3.1–5.9 mm long, 1.4–2.2 mm wide. Dorsum: Setae uncommon, 
inconspicuous, arranged in rows, of one size, 8–11 µm long. Bilocular tubular ducts scattered over surface, 
uncommon on head and within rows of cicatrices; tubes usually slightly divergent. Cicatrices on metathorax 
(some specimens without or with only one or two) or segment I to segment VI; some segments with cicatrices 
present near body margin; some anterior segments with separate rows on anterior and posterior sections, ante­
rior rows usually with fewer cicatrices; totaling 437–900; largest 6–12 µm in diameter. 

Venter. Setae uncommon, arranged in rows, of two sizes, smaller setae 8–11 µm long, over most of surface; 
longest seta anterior of hind coxae 30–55 µm long, longer setae also present in medial areas of abdominal seg­
ments. Bilocular tubular ducts arranged segmentally, uncommon on head, most abundant on margin; similar in 
size and shape as on dorsum or slightly smaller. Multilocular pores in cluster around vulva, many specimens with 

Table 5. Damage sustained by trees in an experimental plot presented by Aughanbaugh et al. (1949). NA=not 
available.

Year Twigs killed Leaders killed % dead trees Growth cu. ft./acre/year
1938 2393 56 0 39.5
1939 3262 61 3 58.1
1942 3824 75 16 69.9
1948 NA NA 28 57.4
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Figure 11. Matsucoccus krystalae Ahmed and Miller, n.sp. Adult female. Broward Co., Proglis Warehouse, Pom­
pano Beach, Florida, March 23, 2018, on Pinus ellottii, J. Farnum. A) Antenna. B) Thoracic spiracle. C) Long 
filamentous setae. D) Hind tibia, tarsus, claw. E) Short filamentous seta. F) Multilocular pore. G) Seventh ab­
dominal spiracle. H) Abdomen bent under body shifting abdominal apex under segments IV, V, or VI. I) Dorsal 
filamentous seta. J) Bilocular tubular ducts. K) Cicatrices.
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ventral vulva located beneath segments IV, V or VI; with 36–72 multilocular pores; diameter of largest pore 10–12 
µm. Thoracic spiracles without definite sclerotized rim on derm or with narrow band of sclerotization; posterior 
spiracle with largest diameter of atrium 28–50 µm; with seven pairs of abdominal spiracles, normally with dermal 
orifice sclerotized, more weakly sclerotized posteriorly, sometimes decreasing in size posteriorly, diameter of der­
mal orifice of first abdominal spiracle 17–25 µm, of seventh spiracle 8–12 µm. Legs large and conspicuous, with 
scale-like pattern on all segments except first tarsal segment; hind leg with trochanter with one long seta, 9–14 
sensoria; femur 228–365 µm long, with 16–29 setae; tibia 228–285 µm long, with 21–47 setae; tarsus (both seg­
ments) 155–180 µm long, tarsal digitule undifferentiated; claw without denticle, with two conspicuous digitules, 
equal in size. Antennae nine segmented, 0.6–0.8 mm long; apical four segments each with two enlarged setae; 
first segment 145–205 µm long, 160–200 µm wide, with 7–10 setae on ventral surface, 19–26 setae on dorsal sur­
face; second segment 85–130 µm long, 110–130 µm wide, with 5–8 setae on ventral surface, 6–7 setae on dorsal 
surface. 
Remarks. Adult females of M. krystalae can be separated from M. gallicolus (characters in parentheses are of 
M. gallicolus) as follows: 437–900 cicatrices (170–378 cicatrices); cicatrices often present on metathorax (not on 
metathorax); cicatrices present near body margin on one or more posterior abdominal segments (not present 
near body margin); with 36–72 multilocular pores (20–32 multilocular pores). Adult females of M. krystalae can 
be separated from M. alabamae (characters in parentheses are of M. krystalae) as follows: Cicatrices present from 
abdominal segment III to VI (metathorax or segment I to segment VI); setae anterior of hind coxae 10–16 µm 
long (18–55 µm long); abdominal spiracles approximately same size (7th abdominal spiracle normally smaller 
than 1st abdominal spiracle); 2–4 setae on venter of first antennal segment (5–9); 7–18 setae on hind femur 
(16–29). Adult females of M. krystalae also are similar to M. apachecae Ray and Williams from Arizona but differ 
from the latter (characters in parentheses are of M. krystalae) by having from 21–45 cicatrices (437–900 cicatri­
ces) present in the medial area of the dorsum (medial, mediolateral, and lateral areas). 

The above description is based on 28 adult females from seven localities.

Third-instar Male
(Fig. 12)
Diagnosis. Two sizes of setae on venter, setae anterior of metacoxae about 30 µm long, marginal setae about 12 
µm long; with 10 or more bilocular tubular ducts on dorsum of abdominal segment III; abdominal spiracles usu­
ally decreasing in size posteriorly; fleshy setae present on distal four antennal segments.
Description. Body elongate, parallel sided, 2.1–2.8 mm long, 1.0–1.2 mm wide. Dorsum: Setae uncommon, 
inconspicuous, arranged in rows, of one size, 9–11 µm long. Bilocular tubular ducts scattered over surface, in seg­
mental rows, associated with setal rows, not arranged in longitudinal lines; with 10 or more ducts on abdominal 
segment III, tubes sometimes slightly divergent. 

Venter. Setae uncommon, arranged in rows, of two sizes, larger 20–30 µm long, smaller 6–12 µm long; 
longest seta anterior of hind coxae 20–36 µm long. Bilocular tubular ducts uncommon on head and medial areas 
of thorax, most abundant on margin, arranged in longitudinal lines, present submedially and laterally; similar 
in size and shape as on dorsum. Thoracic spiracles without definite sclerotized rim on derm; posterior thoracic 
spiracle with largest diameter of atrium 25–30 µm; with seven pairs of abdominal spiracles, normally with dermal 
orifice sclerotized, all equally sclerotized, normally decreasing in size posteriorly, diameter of sclerotized rim of 
dermal orifice of first abdominal spiracle 14–18 µm, of seventh spiracle 8–11 µm. Legs large and conspicuous, with 
scale-like pattern on all segments except first tarsal segment; hind leg with trochanter with one long seta, 8–12 sen­
soria; femur 185–260 µm long, with 18–24 setae; tibia 185–240 µm long, with 37–58 setae; tarsus (both segments) 
125–135 µm long, tarsal digitule undifferentiated; claw without denticle, with two conspicuous digitules, equal in 
size. Antennae nine segmented, 0.6–0.8 mm long; apical four segments each with two enlarged setae; first segment 
120–195 µm long, 125–175 µm wide, with 1–8 setae on ventral surface, 12–18 setae on dorsal surface; second seg­
ment 85–95 µm long, 100–120 µm wide, with 4–7 setae on ventral surface, 4–6 setae on dorsal surface, 2–7 sensilla 
on dorsal surface. Ventral developing genitalia located under dorsal segment IV, V, VI, or VII.
Remarks. Third-instar males of M. krystalae can be separated from M. alabamae (characters in parentheses are 
of M. krystalae) as follows: setae anterior of hind coxae 10–16 µm long (20–36 µm long); abdominal spiracles 
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Figure 12. Matsucoccus krystalae Ahmed and Miller, n.sp. Third-instar male. St. Lucie Co., Ft. Pierce, Florida, 
March 20, 2018, on Pinus ellottii, B. Saunders. A) Seventh and eighth antennal segments. B) Basal antennal seg­
ments. C) Thoracic spiracle. D) Long filamentous seta. E) Hind tibia, tarsus, claw. F) Short filamentous seta. G) 
Abdominal spiracle. H) Dermal pattern. I) Bilocular tubular ducts. J) Dorsal filamentous seta.
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approximately same size (7th abdominal spiracle normally smaller than 1st abdominal spiracle); eight or fewer 
bilocular tubular ducts on dorsum of abdominal segment III (10 or more).

The above description is based on 118 third-instar males from 14 localities.
Type material. Holotype adult female mounted singly on a slide; left label “Holotype/ Hemiptera/ Matsucoccidae 
/ Matsucoccus krystalae/ Ahmed and Miller/Det. MZAhmed, 2018/ E-2018-1367” right label “USA, Florida: St 
Lucie Co./Fort Pierce/ 2001 Rock Rd/ 28 FEB 2018/ E-2018-1367-1” Deposited in FSCA. In addition, there are 
145 paratypes deposited in the following collections: AUMNH, CSCA, NHMUK, UCDC, USNM.
Etymology. The species epithet krystalae is named in honor of Krystal Ashman who first noticed Matsucoccus 
specimens in Lindgren funnel trap samples and who has continued to collect specimens, providing clues to the 
life history of the species. We are most grateful for her efforts.
Material examined. All specimens are considered paratypes. Except the two slides from Chattahoochee. Ala­
chua Co., Leveda Brown Environmental Park, Gainesville, October 16, 2018 (Lat. 29.70818, Long. −82.26424), 
on Pinus sp., (Lindgren trap, baited with ethanol and Alpha-Pinene lures), R. Leahy and B. Alford (2018-6381) 
1 ad. ♀; Brevard Co., Melbourne, October 17, 2017, on Pinus ellottii, (Lindgren trap), B. Saunders (2018-231) 1 
ad. ♀; Titusville, February 26 and March 30, 2018, April 30, 2018 (Lat. 28.49972, Long. −80.78294), on Quercus 
sp., (Lindgren trap baited with ethanol, Alpha-Pinene, and Monochamol lures), B. Saunders (2018−877, 2018-
2279, 2018-3118) 8 3rd ♂ [the exact location and host are questionable since there is a discrepancy in the correct 
GPS coordinates; the official location was Lat. 28.500785, Long. −80.781750]; Broward Co.: Ft. Lauderdale (Lat. 
26.20512, Long. −80.1698), March 23, 2018 and April 26, 2018, on Pinus sp., (Lindgren trap), J. Farnum (2018-
1688, 2018-2743) 6 3rd ♂; Ft. Lauderdale, Port Everglades Airport, (Lat. 26.07176, Long. −80.13222) May 29, 2019, 
on Pinus sp., (Lindgren trap), J. Farnum (2019-4471) 1 3rd ♂; Pompano Beach, (Lat. 26.26933, Long. −80.15826) 
March 23, 2018, April 26, 2018, November 19, 2018, December 18, 2018, April 30, 2019, March 28, 2019, May 
29, 2019, April 24, 2020, on Pinus elliottii (Lindgren trap), J. Farnum (2018-1659, 2018-2744, 2019-139, 2019-
401, 2019-3259, 2019-3878 and 2020-1594) 55 3rd ♂, 14 ad. ♀; Duval Co., Baldwin, Highway 217, Yellow Water 
Rd. (Lat. 30.27885, Long. −81.97732), December 4, 2018, on Pinus sp., (Lindgren trap, baited with ethanol and 
Alpha-Pinene lures), M. Byron and R. Leahy, (2019-249), 1 3rd ♂; Jacksonville (Lat. 30.31203, Long. −81.86378), 
October 16, 2018, on Pinus sp., (Lindgren trap, baited with ethanol, Alpha-Pinene, and Monochamol lures), M. 
Echols, (2018-6376), 1 3rd ♂; Gadsen Co., Chattahoochee, November, day and year unknown sometime before 
1939, on Pinus glabra, A.H. Curtis (USNH # 941030 & HNYGB # 2656) 8 cysts, collected from pressed her­
barium specimens by Louise Russell (USNM); Hillsborough Co., MacDill Air Force Base, Tampa, (Lat. 27.8383, 
Long. −82.5026), October 4, 2017, October 2, 2018, October 16, 2018, October 27, 2018, on Pinus sp. P. Barker, 
(Lindgren trap) (2018-324, 2018-6211, 2018-1961, 2018-6378) 8 3rd ♂, 2 ad. ♀; Miami-Dade Co., Medley, (Lat. 
25.85173, Long. −80.32365) February 23, 2018, March 19, 2018, April 27, 2018, April 30, 2018, November 20, 
2018, December 18, 2018, on Pinus elliotti (Lindgren trap), J. Farnum (2018-1311, 2018-1587, 2018-2720, 2019-
182, 2019-402) 15 3rd ♂, 1 ad. ♀; Nassau Co., Fort Clinch State Park (Lat.30.6942, Long. −81.4389), March 28, 
2018, September 28, 2018, March 12, 2019, on Pinus sp., (Lindgren trap, baited with ethanol and Alapha-Pinene 
lures), R. Leahy (2018-1689, 2018-6018, 2019-2553) 4 3rd ♂; Orange Co., Moss Park, Orlando (Lat. 28.37468, 
Long. −81.18946), October 3, 2011, on Pinus elliotti, M. Weiss (Lindgren trap) (2011-9369) 3 3rd ♂; Palm Beach 
Co., Jupiter (Lat. 26.92833, Long. −80.18029), February 25, 2019, on Pinus sp., (Lindgren trap), J. Farnum (2019-
1993) 1 3rd ♂; Palm Beach Co., Jupiter, Jupiter Country Club (Lat. 26.645895, Long. −80.430269), April 5, 2018, 
on Pinus elliottii, J. Johnson, submitted by Lyle Buss, (2018-1988) 2 cysts; St. Lucie Co., Fort Pierce (Lat. 27.42909, 
Long. −80.40859), February 28, 2018, March 20 and 30, 2018, July 30, 2018, on Pinus elliottii., B. Saunders (Lind­
gren trap) (2018-1367, 2018-2275, 2018-3173, and 2018-4864), 14 3rd ♂, 7 ad. ♀; Volusia Co., Daytona Beach 
(Lat. 29.20743, Long. −81.01269), January 8, 2018 and May 10, 2018, on Pinus sp., P. Coffey (2018-471 and 2018-
3047) 2 3rd ♂; Daytona Beach (Lat.29.207554, Long. −81.012311), June 27, 2018, on Pinus sp., (Lindgren trap), 
P. Coffey (2018-4028) 2 ad. ♀; Daytona Beach (Lat.29.22651, Long. −81.0242), October 10, 2018, on Pinus sp., 
(Lindgren trap), P. Coffey (2018-6210) 1 3rd ♂. 
Life history. Little is known about the life cycle of this species. Most of the biological data were gathered from 
Lindgren funnel traps. Adult females were collected in traps from Brevard Co., Melbourne, October; Broward 
Co., Pompano Beach, April, November and December; Hillsborough Co., Tampa, October; in St. Lucie Co., Fort 
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Pierce, February, March, April and July; St. Lucie Co., in Daytona Beach, June; Alachua Co., Gainesville, October; 
Miami-Dade Co., Medley, March. Similar results were discovered with third-instar males: Brevard Co., Titusville, 
February, March and April; Broward Co., Ft. Lauderdale, March and April; Broward Co., Pompano Beach, March, 
April, November and December; Duval Co., Baldwin, December; Duval Co., Jacksonville, October; Hillsborough 
Co., MacDill Air Force Base, Tampa, October; Miami-Dade Co., Medley, February, April, November, December; 
Nassau Co., Fort Clinch State Park, March, September; Orange Co., Moss Park, Orlando October; Palm Beach 
Co., Jupiter, February: St. Lucie Co., Fort Pierce, February and March; Volusia Co., Daytona Beach January, May, 
June and October. Since specimens were active during the month when they were collected, and since active 
third-instar males and adult females were taken in every month but August, it appears that the species has more 
than a single generation each year. One collection of cysts was recorded in Palm Beach County, Jupiter, on the 
small branches of Pinus elliottii, April 5, 2018 (Figure 13). The cysts were deeply imbedded in the current year’s 
growth but there was no indication of swelling or galling; the only indication that a cyst was present under the 
bark was a small hole with the shiny black integument of the cyst showing through (Figure 13). These pines were 
showing serious die back, but it appears that this was caused by a fungal disease and not the Matusucoccus infes­
tation. However, because of the cryptic nature of this insect it is possible that they may have been a contributing 
factor. 

Other Species
It is worth mentioning that M. macrocicatrices has been collected in eastern North America from Canada to 
Georgia and is often associated with Septobasidium pinicola Snell on Pinus strobus L. (Mech et al. 2013). It can 
be distinguished from the other species in Florida by having (characters of M. alabamae, M. gallicolus, and M. 
krystalae are given in parentheses) enlarged setae on the last five antennal segments (four antennal segments) and 
by cicatrices that are greater than 15 microns in diameter (less than 15 microns). Because M. macrocicatrices has 

Figure 13. Damage likely caused by a pathogen, but trees also infested with Matsucoccus krystalae. A) Slight yel­
lowing on pine trees. B–C) Matsucoccus krystalae cysts associated with damage. D–F) Cysts under the bark of 
pine twigs exposed by removing bark with exit holes.
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only been reported on P. strobus and because Florida is outside the natural range of this host it is unlikely that this 
Matsucoccus species will be found in Florida unless the tree is planted in an ornamental setting.

Conclusions
Two species of Matsucoccus occur in Florida, M. alabamae and M. krystalae. Some of the characters that can be 
used to distinguish between these species in the adult female also are useful in diagnosing third-instar males, 
including the lengths of the setae on the venter and the relative sizes of the abdominal spiracles. Molecular phy­
logenetic analyses based on 18S, 28S D2/D3, 28S D10, and COI genes support morphological determinations. 
Though genetic distance between M. krystalae and M. gallicolus is low, their consistent morphological differences 
relative to the other species in the genus corroborate their independent placements in well-supported clusters in 
the phylogenetic trees. In addition, we did not find any overlap in their geographical ranges. This suggests that 
there are reproductive barriers at the interface that keep them separate. Additional sampling and more allelic 
data will help to understand the situation more precisely. However, we have attempted to collect new samples of 
M. gallicolus for more than two years without success. Matsucoccus species are difficult to find and work with in 
general. Lindgren funnel traps can be used as a means of collecting them. Lindgren funnel traps data have pro­
vided some interesting insight into the life history of these species. Based on the collections from 2018 and 2019, 
it appears that M. krystalae may have more than a single generation each year in Florida.
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