2,454 research outputs found

    Crystallization and X-ray Structure Determination of Cytochrome c_2 from Rhodobacter sphaeroides in Three Crystal Forms

    Get PDF
    Cytochrome c_2 serves as the secondary electron donor that reduces the photo-oxidized bacteriochlorophyll dimer in photosynthetic bacteria. Cytochrome c_2 from Rhodobacter sphaeroides has been crystallized in three different forms. At high ionic strength, crystals of a hexagonal space group (P6_122) were obtained, while at low ionic strength, triclinic (P1) and tetragonal (P4_12_12) crystals were formed. The three-dimensional structures of the cytochrome in all three crystal forms have been determined by X-ray diffraction at resolutions of 2.20 Ă… (hexagonal), 1.95 Ă…, (triclinic) and 1.53 Ă… (tetragonal). The most significant difference observed was the binding of an imidazole molecule to the iron atom of the heme group in the hexagonal structure. This binding displaces the sulfur atom of Met 100, which forms the axial ligand in the triclinic and tetragonal structures

    NRG Oncology-Radiation Therapy Oncology Group Study 1014: 1-Year Toxicity Report From a Phase 2 Study of Repeat Breast-Preserving Surgery and 3-Dimensional Conformal Partial-Breast Reirradiation for In-Breast Recurrence.

    Get PDF
    PURPOSE: To determine the associated toxicity, tolerance, and safety of partial-breast reirradiation. METHODS AND MATERIALS: Eligibility criteria included in-breast recurrence occurring \u3e1 year after whole-breast irradiation, \u3c3 \u3ecm, unifocal, and resected with negative margins. Partial-breast reirradiation was targeted to the surgical cavity plus 1.5 cm; a prescription dose of 45 Gy in 1.5 Gy twice daily for 30 treatments was used. The primary objective was to evaluate the rate of grade ≥3 treatment-related skin, fibrosis, and/or breast pain adverse events (AEs), occurring ≤1 year from re-treatment completion. A rate of ≥13% for these AEs in a cohort of 55 patients was determined to be unacceptable (86% power, 1-sided α = 0.07). RESULTS: Between 2010 and 2013, 65 patients were accrued, and the first 55 eligible and with 1 year follow-up were analyzed. Median age was 68 years. Twenty-two patients had ductal carcinoma in situ, and 33 had invasive disease: 19 ≤1 cm, 13 \u3e1 to ≤2 cm, and 1 \u3e2 cm. All patients were clinically node negative. Systemic therapy was delivered in 51%. All treatment plans underwent quality review for contouring accuracy and dosimetric compliance. All treatment plans scored acceptable for tumor volume contouring and tumor volume dose-volume analysis. Only 4 (7%) scored unacceptable for organs at risk contouring and organs at risk dose-volume analysis. Treatment-related skin, fibrosis, and/or breast pain AEs were recorded as grade 1 in 64% and grade 2 in 7%, with only 1 ( CONCLUSION: Partial-breast reirradiation with 3-dimensional conformal radiation therapy after second lumpectomy for patients experiencing in-breast failures after whole-breast irradiation is safe and feasible, with acceptable treatment quality achieved. Skin, fibrosis, and breast pain toxicity was acceptable, and grade 3 toxicity was rare

    Directional ballistic transport in the two-dimensional metal PdCoO2

    Get PDF
    This project was supported by the Max Planck Society and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MiTopMat, grant agreement no. 715730). M.D.B. and P.H.M. acknowledge EPSRC for PhD studentship support through grant number EP/L015110/1. Research in Dresden benefits from the environment of the Excellence Cluster ct.qmat. A.S. acknowledges support from an ARCS Foundation Fellowship, a Ford Foundation Predoctoral Fellowship and a National Science Foundation Graduate Research Fellowship. A.S. would thanks Z. Gomez and E. Huang for helpful discussions and T. Devereaux for letting us use his group cluster. Computational work was performed on the Sherlock cluster at Stanford University and on resources of the National Energy Research Scientific Computing Center, supported by the DOE under contract DE_AC02-05CH11231. T.S. acknowledges support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation, and from the Natural Sciences and Engineering Research Council of Canada (NSERC), in particular the Discovery Grant (RGPIN-2020-05842), Accelerator Supplement (RGPAS-2020-00060) and Discovery Launch Supplement (DGECR-2020-00222). T.S. contributed to this work prior to joining AWS. D.G.-G.’s and A.W.B.’s involvement in calculations was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. E.Z. and M.M. thank the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM) for financial support. G.B. and D.A.B. acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2018-04280) and from the Canada First Research Excellence Fund.In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from an anisotropic Fermi surface are needed. Here we show how a strongly facetted Fermi surface and the long quasiparticle mean free path present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. We fabricate bar-shaped transport devices narrower than the mean free path from single crystals using focused ion beam milling, such that the ballistic charge carriers at low temperatures frequently collide with both of the side walls that define the channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and a transverse voltage appears in zero magnetic field. Using ballistic Monte Carlo simulations and a numerical solution of the Boltzmann equation, we identify the orientation of the narrow channel as the source of symmetry breaking.Publisher PDFPeer reviewe

    Why do banks promise to pay par on demand?

    Get PDF
    We survey the theories of why banks promise to pay par on demand and examine evidence about the conditions under which banks have promised to pay the par value of deposits and banknotes on demand when holding only fractional reserves. The theoretical literature can be broadly divided into four strands: liquidity provision, asymmetric information, legal restrictions, and a medium of exchange. We assume that it is not zero cost to make a promise to redeem a liability at par value on demand. If so, then the conditions in the theories that result in par redemption are possible explanations of why banks promise to pay par on demand. If the explanation based on customers’ demand for liquidity is correct, payment of deposits at par will be promised when banks hold assets that are illiquid in the short run. If the asymmetric-information explanation based on the difficulty of valuing assets is correct, the marketability of banks’ assets determines whether banks promise to pay par. If the legal restrictions explanation of par redemption is correct, banks will not promise to pay par if they are not required to do so. If the transaction explanation is correct, banks will promise to pay par value only if the deposits are used in transactions. After the survey of the theoretical literature, we examine the history of banking in several countries in different eras: fourth-century Athens, medieval Italy, Japan, and free banking and money market mutual funds in the United States. We find that all of the theories can explain some of the observed banking arrangements, and none explain all of them
    • …
    corecore