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Abstract

Polymers and fiber-reinforced polymer matrix composites play an important role

in many Defense Program applications. Recently an advanced nonlinear viscoelas-

tic model for polymers has been developed and incorporated into ADAGIO, Sandia’s

SIERRA-based quasi-static analysis code. Standard linear elastic shell and contin-

uum models for fiber-reinforced polymer-matrix composites have also been added to

ADAGIO. This report details the use of these models for advanced adhesive joint and

composites simulations carried out as part of an Advanced Simulation and Computing

Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical

response of an adhesive joint when loaded during repeated thermal cycling is simulated,

the response of some composite rings under internal pressurization is calculated, and

the performance of a composite container subjected to internal pressurization, thermal

loading, and distributed mechanical loading is determined. Finally, general compar-

isons between the continuum and shell element approaches for modeling composites

using ADAGIO are given.
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1 Introduction

Polymers play an important role in many different Defense Program applications. They

provide structural integrity, environmental damping, moisture and voltage isolation

and are employed as encapsulants, adhesives and coatings in a variety of weapon

components. Polymers are attractive for their low cost, ease of manufacturing, and

the ability of their material properties to be tailored through the addition of fillers.

However, their thermo-mechanical behavior can be extremely complex. Since polymers

are viscoelastic materials, they undergo a glass transition that radically alters the

perceived physical properties of the material (varying from the rubbery state above

Tg to the glassy state below). Stress and volume relaxation rates are quite sensitive

to temperature, and glassy materials can actually yield under loading. The richness

of the material behavior makes it important to understand how these materials react

to their operational environment. This understanding can aid in the design process,

helping to avoid cohesive cracking within the polymer or delamination at key material

interfaces.

For this ASC AD project, we are specifically interested in being able to analyze

two kinds of material behavior:

1. the thermo-mechanical response of an adhesive joint when loaded during re-

peated thermal cycling, and

2. the performance of an anisotropic elastic (glassy) structure subjected to internal

pressurization, thermal loading, and distributed mechanical loading

Item one calls for a nonlinear viscoelastic model of the adhesive to predict the

stresses and strains generated during thermal cycling and loading through glass tran-

sition. The polymer constitutive model was developed in past years through collabo-

ration between the Engineering and Materials Sciences Centers and has been imple-

mented in the ADAGIO finite element code. The problem we will be analyzing consists

of two concentric metal cylinders bonded together with an adhesive layer. The outer

cylinder is shorter and serves as a stiffener that is sealed at both ends to the longer

inner cylinder (case). The combined structure is then axially loaded and thermally cy-

cled. Of particular interest is the design and loading of the end seal. This problem will
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be among the first major applications to benefit from nonlinear viscoelastic modeling.

Moreover, it will afford critical opportunities to evaluate computational performance

in a large problem setting while also introducing the DP customer to the benefits of

being able to make higher fidelity predictions.

The second item involves new material models and associated code enhancements

to accommodate orthotropic/anisotropic elastic materials with thermal strains. For

many years, Sandia has had to resort to commercial software (ABAQUS) in order to

perform such analyses. Recent and ongoing ADAGIO code development has provided

both orthotropic hex elements and anisotropic shell elements complete with thermal

strains giving us new in-house capabilities to fulfill this need. A general capability for

initializing material orientations has been incorporated into ADAGIO as well. The

problem chosen for study is a composite structural container under pressure, thermal,

and mechanical loadings. Preliminary results from a purely continuum element ap-

proach and a combined shell/continuum element approach will be given. However, to

better understand the differences between shell and continuum modeling approaches,

comparisons will be made first for rings under internal pressure. The importance of us-

ing true cyclic periodic boundary conditions in place of axisymmetric cyclic boundary

conditions for composite structures also will be demonstrated. Moreover, general ob-

servations will be made about the differences between shell and continuum approaches

for modeling composite structures.
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2 Adhesively Bonded Joint

The nonlinear viscoelastic (NLVE) analysis of adhesives lends itself to staged calcula-

tions where the epoxy first undergoes solidification (curing) at elevated temperatures

followed by a thermal cool-down and any subsequent structural modifications and

loading. Although a theory for NLVE curing exists, the requisite material character-

ization and validation are not yet complete and the SIERRA infrastructure is still

under construction (e.g., material model library and material interface wrapper for

incompressibility). Hence, chemistry (e.g., cure shrinkage effects) is neglected in all

subsequent computations.

2.1 Problem Definition

The proposed problem consists of two concentric cylinders that are adhesively bonded

together and sealed at the ends. A schematic of the geometry is shown in Figure 1.

During manufacturing, the outer cylinder is glued to the inner cylinder at an elevated

temperature. The joined cylinders then are cooled to room temperature where the

end of the adhesive joint is sealed metallically. Following this, the inner cylinder is

axially loaded by 18000 lbs (80067 N) producing a nominal end stress of about 8127

psi (56 MPa). The entire assembly is then thermally cycled between 70 ◦C and 55 ◦C

at 3 ◦C/min. During the temperature ramps the axial loading is linearly increased to

30000 lbs at the upper temperature and decreased to 5000 lbs at 55 ◦C. At 70 ◦C, the

temperature is held constant for 2 hours.

For viscoelastic materials, the analysis must begin from a well-defined reference

(equilibrium) state. In a curing epoxy, this naturally would correspond to the elevated

cure temperature where the solidification reaction occurs as the material transitions

from a liquid to a solid. However, since polymerization is being neglected, the anal-

ysis was initiated from the reference temperature (Tref=85 ◦C) defined for the fully

cured material as Tref=Tg + 10 ◦C. Although this was somewhat higher than the

actual curing temperature of 60 ◦C, it produces a rubbery thermal shrinkage in the

direction of what would have been realized by cure shrinkage during polymerization.

The temperature was decreased at 1 ◦C/min from 85 ◦C to 60 ◦C (approximate cure

temperature) and then cooled at 5 ◦C/min to 20 ◦C for the end sealing operation.



15

r=5.845"
(0.1485m)

Adhesive
t =0.046"
(1.168mm)

t =0.026"
(0.660mm)

Symmet ry

t =0.060"
(1.524mm)

0.478"
(1.21cm) End Seal

R=1.62"
(4.1cm)

2.59"
(6 .58cm)

Figure 2.1: Schematic of bonded cylinder geometry.

Notice that during the adhesive bonding and initial cool-down stage, the end seal is

not actually present. Geometrically, it is undesirable to birth finite elements onto a

deformed geometry. Hence, for modeling purposes only, the end seal was included

in the initial mesh, but it was assigned a low modulus. This allowed the material

to deform freely under low load during the initial cooling and then structurally enter

the problem with a stiffer modulus in the next stage of the analysis after the seal is

formally applied at room temperature.

The analysis was performed with SIERRA. Since this is a quasi-static response,

ADAGIO was the code of choice. However, to execute the staged analyses allowing the

material properties of the metallic seal to be initially low and then increased partway

through the analysis, the TEMPO code had to be employed linking two separate

ADAGIO analyses. The annotated material model input deck is included in Appendix

A. Note that fixed contact was used to tie the corners of the mesh at the top end

under the metallic seal. Since the actual geometry of the outer cylinder tapers into

the inner cylinder at the seal end, a fixed contact condition was assumed at this

interface realizing that adhesive was likely to fill the void and bond the two surfaces
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together.

The problem was meshed as a 90-degree sector of the cylinders with symmetry

boundary conditions applied along the bottom end of the mesh perpendicular to the

axis as shown in Figure 2.1. The total model consisted of 68490 elements and 81328

nodes. Although the mesh size is small by comparison to many models, it must be

remembered that the computational expense involved in nonlinear viscoelastic analyses

is much greater than elasticity or plasticity. Moreover, the solution required 460 time

steps to track the staged solution history. This is more than sufficient to shake out

the workings of SIERRA code and demonstrate capability to a customer. A detailed

view of the finite element mesh in the vicinity of the end seal is shown in Figure 2.2.

Here all three materials are visible. The inner and outer cylinders are made of 6061T6

aluminum and the metallic seal is made from an 1100 aluminum alloy. The aluminum

cylinders and seal are assumed to have the same properties: Young’s modulus=69 GPa,

Poisson’s ratio=0.33, and CTE=23.4 ppm/C. A definition of the nonlinear viscoelastic

material properties for the adhesive is provided through the ADAGIO input deck in

APPENDIX A. Because of its length, it is not reproduced here. The analysis was

performed on “Rogue”, a 407-node Linux cluster. Rogue is divided into two parts.

Jobs run in the “Serial” queue are performed using 2.4 GHz Xeon compute nodes,

whereas jobs performed in the “Scico” queue are run using 3.06 GHz Xeon compute

nodes. Note that parallel jobs can be run in either queue. Using 16 processors in the

Scico queue, the execution time was just over 10 hours.

2.2 Thermo-mechanical Response

In the first stage of the analysis, residual stresses are generated as the adhesively

bonded cylinders are cooled to 20 ◦C. These stresses arise from the mismatch between

the thermal strains in the aluminum and adhesive. Because the adhesive originally is

at a temperature higher than its glass transition temperature (Tg), it first exhibits

a rubbery response and then becomes glassy below Tg. Figure 2.3 contains a color

plot of the maximum principal stresses in the adhesive at T=20 ◦C after cooling just

prior to adding the metallic seal. The adhesive shear stresses are an order of magnitude

lower. Figure 2.4 illustrates the corresponding Von Mises stress in the outer aluminum

cylinder. The stresses in the inner cylinder are less than half the magnitude of those
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Seal

Adhesive

Figure 2.2: View of finite element mesh at end seal.

in Figure 2.4.

No attempt was made to analyze any manufacturing stresses induced by the end

sealing operation at room temperature. Rather the Young’s modulus of the metallic

seal was increased from the fictitiously low value of 1 MPa to 69 GPa effectively giving

birth to the joint for the remainder of the analyses. This provided a realistic stiffness to

resist subsequent loading. Note also there is the implicit assumption that the interface

between the inner and outer cylinders (underneath the metallic seal) is adhesively

bonded together. This is achieved by a fixed contact.

Once the end seal is in place the inner cylinder is axial pre-loaded in tension under

18000 lbs (80067 N). A plot of the Von Mises element stresses is shown in Figure

2.5 just after application of the pre-load. The magnitude of the maximum stress in

the inner cylinder, outer cylinder, and metallic seal are 61 MPa (8.85 ksi), 69 MPa

(10 ksi), and 51 MPa (7.4 ksi), respectively. The highest stress in the metallic seal

during the entire thermo- mechanical history was recorded at the 70 ◦C temperature

where the axial load was increased to 30000 lbs. A plot of these Von Mises stresses

is provided in Figure 2.6. Here the maximum stress is seen to reach 85 MPa and is

located along the thin top end of the seal. The stress in the area of the cylinder overlap
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Figure 2.3: Maximum principal stresses (Pa) in adhesive at T=20 ◦C prior to sealing.

Figure 2.4: von Mises stresses (Pa) in outer cylinder at T=20 ◦C prior to sealing.
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Figure 2.5: von Mises element stresses (Pa) after application of pre-load.

is between 45 and 55 MPa. The seal stresses at the lower temperature (T=-55 ◦C)

are actually reduced somewhat due to the fact that the axial pre-load is only 5000 lbs.

These stresses are plotted in Figure 2.7. However, the location of the maximum stress

does shift towards the opposite end of the seal. The maximum principal stresses in

the adhesive are greatest at the lower temperature due to the increased mismatch in

thermal strains under the geometric constraint between cylinders. These stresses are

plotted in Figure 2.8.
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Figure 2.6: von Mises stresses (Pa) in seal at T=70 ◦C under 30000 lb load.

Figure 2.7: von Mises stresses (Pa) in seal at T=-55 ◦C under 5000 lb load.
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Figure 2.8: Maximum principal stresses in adhesive at T=-55 ◦C under 5000lb load.
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3 Isotropic and Composite Circular Rings Under Internal

Pressure

3.1 Composite Modeling Overview

Laminated fiber-reinforced composite structures can be classified as plate or shells in

almost all cases. Recall that plates refer to flat structures which are thin in their

thickness direction compared to their inplane dimensions, whereas shells refer to sim-

ilar structures which are curved. Due to this small thickness, certain kinematic as-

sumptions can usually be applied in analyzing such structures. If a plate or shell

is thin enough, the usual Kirchhoff bending constraints of normals to the midplane

remaining straight and normal to the midplane under the application of load can be

applied. That is, if thin enough, the plate or shell will not exhibit any transverse

shear response. However, if a structure is sufficiently thick, this condition needs to be

relaxed to allow the transverse shear response of the structure to be captured. In such

cases, Mindlin theory is typically applied. In a majority of cases, using a plate/shell

theory in modeling a composite structure is usually sufficient. However, using such a

theory is not a requirement. That is, such composites can be analyzed using an ap-

propriate continuum approach. Such a continuum approach does not involve enforcing

any kinematic conditions likely to result for a given structure a priori beyond the usual

selection of a suitable strain measure.

Regardless of whether a shell or continuum approach is used, it is usually neces-

sary to use a numerical method to determine the structural response of a composite

structure for most cases beyond a simple few for which analytical results can be de-

termined. In structural mechanics, the favored approach is, of course, finite element

analysis. The pertinent questions are then when can shell elements be used accurately

and efficiently? and when will it be necessary to use continuum elements? ADAGIO

and PRESTO already have the necessary constitutive laws for models using either

approach.1 The continuum material law that can be used for an individual layer is

given by the inverse of Eq. (1.1) in Reference 1, whereas the laminate material model

that can be used for an entire lay-up is given by Eqs. (1.27) and (1.28) in Reference 1.

When analyzing composite structures, much of the intuition acquired from anal-

ysis of isotropic structures cannot be used. For instance, in the case of an isotropic
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structure possessing axisymmetric geometry under axisymmetric loads, no circum-

ferential displacements will occur. Rather, in such a case, the structure can only

expand/contract along the radial and axial directions. Hence, such a situation can

be modeled by considering only a small sector (pie cut) and applying boundary con-

ditions on the circumferential edges specifying that no circumferential displacements

occur. However, in the case of a laminated composite structure possessing axisym-

metric geometry under axisymmetric loads, circumferential displacements may or may

not occur depending on the laminate stacking sequence. Thus, when a small sector

is modeled for a composite structure, it is not correct to simply apply a condition of

no circumferential displacements along the sector circumferential edges. Rather, true

cyclic periodic boundary conditions must be used such that the sector modeled de-

forms in a way that the periodicity is preserved in the response. That is, the response

is still axisymmetric in that it is independent of the angular position when expressed

using an appropriate cylindrical coordinate system, even though it may involve cir-

cumferential displacements. For example, if a 10◦ sector is modeled, the deformations

must be such that taking 36 of these deformed 10◦ sectors, the ends would still fit

together to form a complete 360◦ ring with no gaps.

In order to demonstrate these concepts clearly, various isotropic and composite

rings under internal pressure will be examined. Two different ring geometries will be

considered. The first ring geometry to be presented corresponds to a smaller radius,

larger thickness, and a longer axial dimension than that for the second ring geometry

which will be examined. Each ring is analyzed for various layer properties and stacking

sequences. One goal of this ASC AD project has been to understand the differences

between modeling thin structures using continuum and shell approaches in terms of

the types of behavior that can be captured and in terms of computational cost. Hence,

the rings will be analyzed using both continuum and shell element approaches. The

linear elastic orthotropic shell and continuum models in ADAGIO/PRESTO have

been verified with numerous orthotropic regression tests. Nevertheless, each modeling

approach has its advantages and disadvantages/limitations. These differences will be

explored presently.
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Ro

Ri

Ro = 4.1” (10.414 cm) 

 Ri = 4.0” (10.160 cm) 

Figure 3.1: Ring A geometry.

3.2 Ring A Problem Definition

The “Ring A” geometry is as shown in Figure 3.1. Four layers each having a thickness

of 0.025” (0.0635 cm) are used with an inner ring radius of 4.0” (10.16 cm). The ring

has an axial length of 0.25” (0.0635cm). Each lamina has the following orthotropic

properties:

E11 = 64.03 GPa (3.1)

E22 = 55.50 GPa (3.2)

E33 = 9.78 GPa (3.3)

ν12 = 0.081 (3.4)

ν23 = 0.303 (3.5)

ν31 = 0.0462805 (3.6)

G12 = G23 = G31 = 4.45 GPa (3.7)

Three composite laminate stacking sequences are considered: a symmetric cross-ply

stacking sequence of [0/90/90/0], a uniform stacking sequence of [30/30/30/30], and a

non-symmetric stacking sequence of [10/50/60/30]. Here the first layer in each stacking

sequence corresponds to the outermost ring. A fiber angle of 0◦ corresponds to the

circumferential direction, while a fiber angle of 90◦ corresponds to the axial direction.
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Other fiber angles are established by the appropriate rotation in the plane defined by

the 0◦ and 90◦ fiber directions.

In order to demonstrate the validity of the cyclic periodic boundary conditions in

ADAGIO, only a 10◦ sector of each ring is modeled. The cyclic periodic boundary con-

ditions applied on each circumferential edge allow for circumferential displacements.

However, as previously noted, the circumferential displacements of the two circumfer-

ential edges must be compatible such that 36 of these 10◦ sectors could be fit together

to create a complete ring without any gaps in the deformed configuration. The com-

posite rings for this ring geometry are modeled only using a continuum approach with

solid brick elements.

3.3 Ring A Results

Each ring is subjected to an internal pressure of 100 psi. For the [0/90/90/0] cross-ply,

the deformed shape is as shown in Figure 3.2. Such a symmetric cross-ply stacking

sequence does not lead to any coupling between shear and normal behaviors or mem-

brane and bending behaviors. Furthermore for this stacking sequence, the cross-ply

stacking sequence is aligned with the cylindrical geometry such that the fibers are

aligned in the circumferential and axial directions only. Hence, the deformations in-

volve only radial and axial displacements. In such a case as this, explicitly constraining

the circumferential displacements to be zero would not affect the solution.

The deformed mesh for the [30/30/30/30] composite ring is shown in Figures 3.3

and 3.4. Here, although there is no coupling between membrane and bending behav-

iors because the lay-up is symmetric about the middle surface, the shear and normal

behaviors are coupled when viewed using the cylindrical coordinate system aligned

naturally with the cylindrical ring geometry. That is, the membrane and bending

normal stresses are coupled to the membrane and bending shear strains, respectively.

Likewise, the membrane and bending shear stresses are coupled to the membrane and

bending normal strains. It is precisely these couplings which lead to the shear behavior

which is evident in the deformed geometry. Here is a case where if no circumferential

displacements were applied to the circumferential edges of the 10◦ wedge, the solution

that would result would not correspond to the solution determined by modeling the

entire ring. That is, applying no circumferential displacements to the 10◦ wedge would
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Figure 3.2: Deformed [0/90/90/0] composite Ring A (100X mag. of displacements).
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Figure 3.3: Deformed [30/30/30/30] composite Ring A (100X mag. of displacements).

overconstrain the solution.

Finally, the deformed mesh for the [10/50/60/30] stacking sequence is shown in

Figures 3.5 and 3.6. This stacking sequence involves coupling both between normal

and shear behaviors and membrane and bending behaviors. The coupling between

membrane and bending behaviors arises from the non-symmetric lay-up and links the

membrane stresses to the bending strains as well as connecting the bending stresses to

the membrane strains. Clearly, the deformed shape in this case is the most complex

owing to its stacking sequence which has all possible couplings present.
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Figure 3.4: Undeformed and deformed side views of [30/30/30/30] composite Ring A

(100X mag. of displacements).

3.4 Ring B Problem Definition

Like the Ring A problems just presented, the “Ring B” problems involve a 4-layer

composite ring under internal pressure. However, Ring B has a larger internal radius

of 7.908” and a smaller total thickness of 0.01”. Stacking sequences of [0/90/90/0],

[30/45/45/30], [30/−30/30/−30], and [30/60/50/10] are analyzed. In each case, the

stacking sequence is given with the first angle corresponding to the outer layer with

the remaining angles for the remaining layers working inward. The base material

properties for each layer when viewed from a local coordinate system aligned with the
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Figure 3.5: Deformed [10/50/60/30] composite Ring A (100X mag. of displacements).

Figure 3.6: Deformed side view of [10/50/60/30] composite Ring A (100X mag. of

displacements).
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principal material directions are

E11 = 9.28691 Msi (3.8)

E22 = 8.04972 Msi (3.9)

E33 = 1.41849 Msi (3.10)

ν12 = 0.081 (3.11)

ν23 = 0.303 (3.12)

ν31 = 0.0462805 (3.13)

G12 = 0.645428 Msi (3.14)

G23 = 0.645428 Msi (3.15)

G31 = 0.645428 Msi (3.16)

ρ = 0.000140426
lb · s2

in4
(3.17)

In addition to studying actual composite rings, an isotropic ring with the following

material properties is also studied:

E = 9.28691 Msi (3.18)

ν = 0.303 (3.19)

ρ = 0.000140426
lb · s2

in4
(3.20)

For each stacking sequence including the isotropic ring, the ring has a height of 0.1”.

In a further demonstration example, a [30/45/45/30] ring with a height of 0.01” is

presented as a special case where the shell theory kinematic assumptions do not lead

to high accuracy for some of the stress results. In all cases, the applied pressure

magnitude is 1 psi and the ring is free on all other edges. The ADAGIO input decks for

the continuum and shell models corresponding to the [30/60/50/10] stacking sequence

case are given in Appendices B and C, respectively.

In the case of an isotropic ring, simple results for the circumferential stress and

expansion can be determined. Straightforward equilibrium calculations lead to the

following equation for the hoop stress:

σθθ =
pR

t
(3.21)

where θ is the circumferential coordinate of the natural r-θ-z cylindrical coordinate
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system, p is the applied pressure, R is the nominal ring radius, and t is the ring thick-

ness. Because the only nonzero stress is the circumferential stress, the corresponding

circumferential strain can then be determined as

εθθ =
σθθ
E

(3.22)

Finally, the radial deflection required to produce this circumferential strain is

vr = Rnew −Rold ≈ εθθRold (3.23)

For the chosen geometry and isotropic material properties, the following results are

obtained:

σθθ = 790.8 psi (3.24)

εθθ = 0.0000851521 (3.25)

vr = 0.000673 in. (3.26)

3.5 Ring B Results

In the following pages, deformation and stress results are presented for all of the chosen

rings. Also shown are the deformed geometries for all cases, and plots of strain, stress,

or force and force-couple resultants for a few select cases. For all of the rings that

are 0.1” tall, a 0.5◦ sector is modeled with periodic boundary conditions. For the

additional [30/45/45/30] ring which is 0.01” tall, a 0.0625◦ sector is modeled, again

with periodic boundary conditions. For the plots of the deformed meshes, only the

first column of elements is shown for convenience. Note that which entries are present

in the laminate stiffness matrices that describe the laminate material response depend

on the specific stacking sequence. A full range of stacking sequences have been chosen

all the way from an isotropic case to a random lay-up of [30/60/50/10] which has

nonzero values for all entries in [A], [B], and [D].

Results for the various rings are presented in numerous tables and figures in this

section. However, only an overview of the many results will be discussed subsequently.

For the isotropic case, the continuum and shell element results match very well.

Moreover, the results from each for the radial displacement and circumferential stress

match the mechanics of materials solution given by Eqs. (3.21)-(3.23). Similarly, ex-

cellent agreement between the two approaches results for the [0/90/90/0] symmetric
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cross-ply stacking sequence. Note that the [0/90/90/0] stacking sequence results in the

same set of nonzero entries in [A], [Ats], [B], and [D] as the isotropic case, but with,

of course, different values. For both of these simple cases, the shell results required

both fewer CG iterations and CPU time in ADAGIO.

For the [30/45/45/30] symmetric stacking sequence, the laminate has coupling be-

tween normal and shear membrane stresses and strains (nonzero A16 and A26), in

addition to coupling between normal and shear bending stresses and strains (nonzero

D16 and D26). For this case, the agreement between the two approaches is reasonable

for all results for the 0.1” high ring. Note in Figure 3.11 which shows the deformed

continuum model for this ring height, edge effects are quite apparent. However, the

corresponding deformed shell model shown in Figure 3.12 does not exhibit such dis-

placement edge effects. Such edge effects should become even more dominant for a

smaller height ring. This is, in fact, what is observed for the [30/45/45/30] ring which

is only 0.01” in height. For this smaller ring height, reasonable agreement between the

continuum and shell approaches result for the radial displacement and circumferen-

tial stress, but both the axial stress and the circumferential shear stress results differ

significantly. In this particular case, care must be taken to achieve accurate results

as demonstrated by the distribution of stresses shown in Figures 3.14 and 3.15. The

corresponding force and force-couple resultants for the shell model are shown in Fig-

ures 3.17-3.19. Obviously, since only a single element is used in the thickness direction

under the assumptions of Mindlin shell theory, it is not possible for the shell model to

capture the actual stress variation in the radial direction, or the curving of lines which

are originally purely radial in direction.

The antisymmetric angle-ply stacking sequence of [30/−30/30/−30] does not have

coupling between normal and shear membrane stresses and strains or coupling between

normal and shear bending stresses and strains. However, it does have coupling between

the shear bending strains and the normal membrane stresses, the normal bending

strains and the shear membrane stresses, the shear membrane strains and the normal

bending stresses, and the normal membrane strains and the shear bending stresses

(nonzero B16 and B26). For this particular case, the agreement between the two

approaches for the radial deflection appears to be reasonable. On the other hand,

most of the stress results are off. For instance, the circumferential stress results are
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very different in nature with the continuum model giving circumferential stresses which

are similar in each layer, but the shell model giving values that differ between the inner

and outer layers. Moreover, the shell model predicts nonzero axial stresses which sum

to zero over the four layers, whereas the continuum model predicts all layers to have

zero axial stress. Finally, although the circumferential shear stress results have the

same sign for each layer in the two approaches, the shell model predicts a big variation

in the value of this stress between the inner and outer layers, whereas the continuum

model does not. The variation in layer stresses coming from the shell model is seen to

arise from its prediction of a significant bending shear strain as shown in Figure 3.24.

In this and most other cases, presumably the continuum model results are to be trusted

more than the shell results, because the continuum model is based on less restrictive

kinematic assumptions than the shell model. Note that for this particular stacking

sequence, the shell and continuum models required comparable computational effort.

Finally, the somewhat contrived [30/60/50/10] lay-up has all terms present in

[A], [B], and [D] leading to all possible couplings between membrane and bending

stresses and strains. However, the off-diagonal terms in [Ats] are still zero, as the two

transverse shear moduli are taken to be equal. For this particular case, reasonable

agreement exists between the shell and continuum results for all quantities examined.

Note in Figures 3.25 and 3.26 the relatively significant bending that results for this

stacking sequence which has a full membrane/bending coupling matrix [B]. In this

particular case, the shell model required significantly more computational effort than

the continuum model.
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Table 3.1: Radial displacement at middle of inside surface for isotropic Ring B.

Case Vr
(in.)

Mech. of Mat. 0.000673

Cont. FEM 0.000674161

Shell FEM 0.000673471

Table 3.2: Stress σXX = σrr at ring center for isotropic Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Mech. of Mat. 0.0 0.0 0.0 0.0

Cont. FEM -1.285492E-01 -3.789259E-01 -6.307772E-01 -8.768584E-01

Shell FEM -1.322894E-10 -1.322894E-10 -1.322894E-10 -1.322894E-10

Table 3.3: Stress σY Y = σzz at ring center for isotropic Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Mech. of Mat. 0.0 0.0 0.0 0.0

Cont. FEM 9.381270E-03 4.009083E-03 -7.445849E-03 -1.784666E-02

Shell FEM -2.792358E-02 -1.004028E-02 7.873535E-03 2.575684E-02

Table 3.4: Stress σZZ = σθθ at ring center for isotropic Ring B.

Case L1 L2 L3 L4 AVG
(psi) (psi) (psi) (psi) (psi)

Mech. of Mat. 790.8000 790.8000 790.8000 790.8000 790.8000

Cont. FEM 790.5351 790.7678 790.9818 791.1935 790.8696

Shell FEM 790.7740 790.8325 790.8911 790.9496 790.8618
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Table 3.5: Stress σXY = σzr at ring center for isotropic Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Mech. of Mat. 0.0 0.0 0.0 0.0

Cont. FEM 8.828444E-07 3.358880E-06 2.407217E-06 1.432775E-06

Shell FEM -4.016570E-05 -4.016575E-05 -4.016580E-05 -4.016585E-05

Table 3.6: Stress σY Z = −σθz at ring center for isotropic Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Mech. of Mat. 0.0 0.0 0.0 0.0

Cont. FEM -6.401723E-05 -6.235721E-05 -6.138064E-05 -6.052429E-05

Shell FEM 7.139375E-06 2.592917E-06 -1.953540E-06 -6.499996E-06

Table 3.7: Stress σZX = −σrθ at ring center for isotropic Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Mech. of Mat. 0.0 0.0 0.0 0.0

Cont. FEM 3.224001E-03 -8.411866E-03 -2.593525E-03 1.459236E-02

Shell FEM 3.944047E-03 3.944046E-03 3.944045E-03 3.944044E-03

Table 3.8: Computational cost for isotropic Ring B.

CPU
Case Model Elements Nodes DOF w/o BC Iterations (sec)

Cont. FEM 0.5 deg 800 1155 3465 518 5.779

Shell FEM 0.5 deg 200 231 1386 230 2.290
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Figure 3.7: Deformed isotropic Ring B continuum model showing 1 element in circum-

ferential direction. Deformations magnified by 1000.
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Figure 3.8: Deformed isotropic Ring B shell model showing 1 element in circumferential

direction. Deformations magnified by 1000.
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Table 3.9: Radial displacement at middle of inside surface for [0/90/90/0] Ring B.

Case Vr
(in.)

Cont. FEM 0.00072226

Shell FEM 0.000721516

Table 3.10: Stress σXX = σrr at ring center for [0/90/90/0] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -1.340192E-01 -3.844722E-01 -6.194120E-01 -8.685544E-01

Shell FEM -1.033863E-10 -1.034079E-10 -1.034079E-10 -1.033864E-10

Table 3.11: Stress σY Y = σzz at ring center for [0/90/90/0] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM 4.265626E+00 -4.262483E+00 -4.255891E+00 4.250383E+00

Shell FEM 4.275406E+00 -4.267586E+00 -4.271603E+00 4.263306E+00

Table 3.12: Stress σZZ = σθθ at ring center for [0/90/90/0] Ring B.

Case L1 L2 L3 L4 AVG
(psi) (psi) (psi) (psi) (psi)

Cont. FEM 847.2699 734.0089 734.2285 848.0016 790.8772

Shell FEM 847.7199 734.1360 734.0841 847.5402 790.8701

Table 3.13: Stress σXY = σzr at ring center for [0/90/90/0] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -1.181300E-05 -1.513988E-05 8.299375E-06 8.985447E-06

Shell FEM -1.835007E-05 -1.834918E-05 -1.834918E-05 -1.835007E-05
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Table 3.14: Stress σY Z = −σθz at ring center for [0/90/90/0] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -2.408314E-05 7.427691E-06 6.961428E-06 -2.420312E-05

Shell FEM 4.575826E-06 1.429134E-06 -1.717616E-06 -4.864422E-06

Table 3.15: Stress σZX = −σrθ at ring center for [0/90/90/0] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM 7.271318E-04 -5.612549E-03 -2.052617E-03 1.376524E-02

Shell FEM 3.746277E-03 3.747842E-03 3.747843E-03 3.746279E-03

Table 3.16: Computational cost for [0/90/90/0] Ring B.

CPU
Case Model Elements Nodes DOF w/o BC Iterations (sec)

Cont. FEM 0.5 deg 800 1155 3465 643 8.859

Shell FEM 0.5 deg 200 231 1386 369 3.180
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Figure 3.9: Deformed [0/90/90/0] Ring B continuum model showing 1 element in

circumferential direction. Deformations magnified by 1000.
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Figure 3.10: Deformed [0/90/90/0] Ring B shell model showing 1 element in circum-

ferential direction. Deformations magnified by 1000.
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Table 3.17: Radial displacement at middle of inside surface for 0.1” high [30/45/30/30]

Ring B.

Case Vr
(in.)

Cont. FEM 0.00204457

Shell FEM 0.00202239

Table 3.18: Stress σXX = σrr at ring center for 0.1” high [30/45/30/30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -1.518291E-01 -4.006721E-01 -6.055231E-01 -8.550707E-01

Shell FEM -4.583551E-10 -4.592669E-10 -4.592670E-10 -4.583556E-10

Table 3.19: Stress σY Y = σzz at ring center for 0.1” high [30/45/30/30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -85.04935 84.39281 84.80602 -84.15880

Shell FEM -83.72532 83.80194 83.76256 -83.83939

Table 3.20: Stress σZZ = σθθ at ring center for 0.1” high [30/45/30/30] Ring B.

Case L1 L2 L3 L4 AVG
(psi) (psi) (psi) (psi) (psi)

Cont. FEM 953.9507 642.9663 643.4601 955.7718 799.0372

Shell FEM 945.3959 636.7208 636.6677 945.2206 791.0013

Table 3.21: Stress σXY = σzr at ring center for 0.1” high [30/45/30/30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -4.364775E-03 1.234140E-02 1.218694E-02 -8.669811E-03

Shell FEM -9.679240E-05 -1.342813E-04 -1.342804E-04 -9.679284E-05
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Table 3.22: Stress σY Z = −σθz at ring center for 0.1” high [30/45/30/30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -355.1625 355.5782 355.4099 -355.8285

Shell FEM -351.9032 351.9069 351.8897 -351.8960

Table 3.23: Stress σZX = −σrθ at ring center for 0.1” high [30/45/30/30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM 4.623912E-03 -1.053747E-02 -5.237671E-03 1.940667E-02

Shell FEM 4.268043E-03 4.284822E-03 4.284825E-03 4.268053E-03

Table 3.24: Computational cost for 0.1” high [30/45/30/30] Ring B.

CPU
Case Model Elements Nodes DOF w/o BC Iterations (sec)

Cont. FEM 0.5 deg 800 1155 3465 1258 16.309

Shell FEM 0.5 deg 200 231 1386 1983 13.509



44

Figure 3.11: Deformed 0.1” high [30/45/45/30] Ring B continuum model showing 1

element in circumferential direction. Deformations magnified by 1000.
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Figure 3.12: Deformed 0.1” high [30/45/45/30] Ring B shell model showing 1 element

in circumferential direction. Deformations magnified by 1000.
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Table 3.25: Radial Displacement at middle of inside surface for 0.01” high

[30/45/30/30] Ring B.

Case Vr
(in.)

Cont. FEM 0.00224834

Shell FEM 0.00202239

Table 3.26: Stress σXX = σrr (average over layer) for 0.01” high [30/45/30/30] Ring

B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -1.366517E-01 -3.938791E-01 -6.084564E-01 -8.641918E-01

Shell FEM 2.517050E-09 2.515813E-09 2.515813E-09 2.517050E-09

Table 3.27: Stress σY Y = σzz (average over layer) for 0.01” high [30/45/30/30] Ring

B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -19.25563 19.26583 19.28215 -19.26312

Shell FEM -83.78129 83.78321 83.78173 -83.78320

Table 3.28: Stress σZZ = σθθ (average over layer) for 0.01” high [30/45/30/30] Ring

B.

Case L1 L2 L3 L4 AVG
(psi) (psi) (psi) (psi) (psi)

Cont. FEM 926.0904 655.4124 655.6328 927.0034 791.0348

Shell FEM 945.3318 636.7004 636.6885 945.2853 791.0015
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Table 3.29: Stress σXY = σzr (average over layer) for 0.01” high [30/45/30/30] Ring

B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -2.939306E-03 5.007919E-03 1.916127E-03 -6.155546E-04

Shell FEM -1.529511E-05 1.814652E-05 1.814592E-05 -1.529484E-05

Table 3.30: Stress σY Z = −σθz (average over layer) for 0.01” high [30/45/30/30] Ring

B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -174.1657 174.3227 174.3401 -174.3924

Shell FEM -351.9023 351.9046 351.8919 -351.8970

Table 3.31: Stress σZX = −σrθ (average over layer) for 0.01” high [30/45/30/30] Ring

B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM 1.423775E-02 5.067150E-02 1.431179E-02 6.711946E-02

Shell FEM 2.623334E-02 2.621714E-02 2.621714E-02 2.623334E-02

Table 3.32: Computational cost for 0.01” high [30/45/30/30] Ring B.

CPU
Case Model Elements Nodes DOF w/o BC Iterations (sec)

Cont. FEM 0.0625 deg 576 875 2625 1336 12.450

Shell FEM 0.0625 deg 24 35 210 742 1.099
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Figure 3.13: Deformed 0.01” high [30/45/45/30] Ring B continuum model showing 1

element in circumferential direction. Deformations magnified by 1000.
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(a) (b)

(c)

Figure 3.14: Stress distribution for deformed 0.01” high [30/45/45/30] Ring B contin-

uum model: (a) σXX = σrr; (b) σY Y = σzz; (c) σZZ = σθθ. Deformations magnified

by 1000.
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(a) (b)

(c)

Figure 3.15: Stress distribution for deformed 0.01” high [30/45/45/30] Ring B con-

tinuum model: (a) σXY = σzr; (b) σY Z = −σθz; (c) σZX = −σrθ. Deformations

magnified by 1000.
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Figure 3.16: Deformed 0.01” high [30/45/45/30] Ring B shell model showing 1 element

in circumferential direction. Deformations magnified by 1000.
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Figure 3.17: Force resultants distribution for deformed 0.01” high [30/45/45/30] Ring

B shell model: (a) N11 = Nθθ; (b) N22 = Nzz; (c) N12 = Nθz. Deformations magnified

by 1000.
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Figure 3.18: Force resultants distribution for deformed 0.01” high [30/45/45/30] Ring

B shell model: (a) N23 = Nzr; (b) N31 = Nrθ. Deformations magnified by 1000.
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Figure 3.19: Force-couple resultants distribution for deformed 0.01” high

[30/45/45/30] Ring B shell model: (a) M11 = Mθθ; (b) M22 = Mzz; (c) M12 = Mθz.

Deformations magnified by 1000.
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Table 3.33: Radial displacement at middle of inside surface for [30/-30/30/-30] Ring

B.

Case Vr
(in.)

Cont. FEM 0.00133504

Shell FEM 0.00141851

Table 3.34: Stress σXX = σrr at ring center for [30/-30/30/-30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -1.234314E-01 -3.684242E-01 -6.204792E-01 -8.742052E-01

Shell FEM 1.607640E-09 1.607727E-09 1.607723E-09 1.607641E-09

Table 3.35: Stress σY Y = σzz at ring center for [30/-30/30/-30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -5.058408E-01 -3.142714E-01 1.706637E-01 6.368898E-01

Shell FEM 61.22946 -61.16712 -61.18947 61.13670

Table 3.36: Stress σZZ = σθθ at ring center for [30/-30/30/-30] Ring B.

Case L1 L2 L3 L4 AVG
(psi) (psi) (psi) (psi) (psi)

Cont. FEM 800.2952 801.0306 801.3671 801.7778 801.1177

Shell FEM 702.3005 879.7058 879.6369 702.1315 790.9437

Table 3.37: Stress σXY = σzr at ring center for [30/-30/30/-30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM 2.037678E-03 1.994841E-02 -1.885386E-02 7.482109E-03

Shell FEM -9.842990E-05 -1.138081E-04 -9.132145E-05 -1.067193E-04
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Table 3.38: Stress σY Z = −σθz at ring center for [30/-30/30/-30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -402.2333 402.7932 -402.6165 402.5658

Shell FEM -190.1512 515.7996 -515.7662 190.1199

Table 3.39: Stress σZX = −σrθ at ring center for [30/-30/30/-30] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM 1.904779E-02 2.953888E-02 3.683479E-02 2.801812E-02

Shell FEM -3.688214E-02 -3.688607E-02 -3.688598E-02 -3.688217E-02

Table 3.40: Computational cost for [30/-30/30/-30] Ring B.

CPU
Case Model Elements Nodes DOF w/o BC Iterations (sec)

Cont. FEM 0.5 deg 800 1155 3465 947 12.589

Shell FEM 0.5 deg 200 231 1386 1961 13.419
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Figure 3.20: Deformed [30/-30/30/-30] Ring B continuum model showing 1 element

in circumferential direction. Deformations magnified by 1000.
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Figure 3.21: Deformed [30/-30/30/-30] Ring B shell model showing 1 element in cir-

cumferential direction. Deformations magnified by 1000.
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Figure 3.22: Inplane membrane strain distribution for deformed [30/-30/30/-30] Ring

B shell model: (a) e11 = eθθ; (b) e22 = ezz; (c) 2e12 = 2eθz. Deformations magnified

by 1000.
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Figure 3.23: Transverse shear strain distribution for deformed [30/-30/30/-30] Ring B

shell model: (a) 2e23 = 2ezr; (b) 2e31 = 2erθ. Deformations magnified by 1000.
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Figure 3.24: Bending strain distribution for deformed [30/-30/30/-30] Ring B shell

model: (a) κ11 = κθθ; (b) κ22 = κzz; (c) 2κ12 = 2κθz. Deformations magnified by

1000.
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Table 3.41: Radial Displacement at middle of inside surface for [30/60/50/10] Ring B.

Case Vr
(in.)

Cont. FEM 0.00120676

Shell FEM 0.00119091

Table 3.42: Stress σXX = σrr at ring center for [30/60/50/10] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -1.056251E-01 -3.155246E-01 -5.124476E-01 -8.027225E-01

Shell FEM -3.145848E-08 -3.403898E-08 4.433894E-08 -6.402386E-08

Table 3.43: Stress σY Y = σzz at ring center for [30/60/50/10] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -48.17365 -45.07275 251.1764 -157.8839

Shell FEM -39.88367 -47.78226 252.3777 -164.6430

Table 3.44: Stress σZZ = σθθ at ring center for [30/60/50/10] Ring B.

Case L1 L2 L3 L4 AVG
(psi) (psi) (psi) (psi) (psi)

Cont. FEM 657.5120 666.9631 578.9243 1292.930 799.0824

Shell FEM 635.8290 660.3647 570.6384 1289.375 789.0518

Table 3.45: Stress σXY = σzr at ring center for [30/60/50/10] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -5.734813E-03 8.671496E-03 1.301813E-02 -3.997555E-03

Shell FEM -1.289170E-03 -1.432853E-03 3.417504E-03 -3.304830E-03
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Table 3.46: Stress σY Z = −σθz at ring center for [30/60/50/10] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -324.1679 370.4191 161.0073 -207.2136

Shell FEM -296.3977 370.9121 140.9399 -215.4537

Table 3.47: Stress σZX = −σrθ at ring center for [30/60/50/10] Ring B.

Case L1 L2 L3 L4
(psi) (psi) (psi) (psi)

Cont. FEM -9.231838E-03 -3.510736E-03 -7.435843E-04 2.587843E-02

Shell FEM 7.039402E-06 1.077726E-02 7.067532E-03 1.297668E-03

Table 3.48: Computational cost for [30/60/50/10] Ring B.

CPU
Case Model Elements Nodes DOF w/o BC Iterations (sec)

Cont. FEM 0.5 deg 800 1155 3465 1341 17.459

Shell FEM 0.5 deg 200 231 1386 50,173 325.040
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Figure 3.25: Deformed [30/60/50/10] Ring B continuum model showing 1 element in

circumferential direction. Deformations magnified by 1000.
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Figure 3.26: Deformed [30/60/50/10] Ring B shell model showing 1 element in cir-

cumferential direction. Deformations magnified by 1000.



66

4 Composite Containers

4.1 Problem Definition

In order to demonstrate the ability of ADAGIO to solve large problems involving com-

posites, a composite container will be analyzed under internal pressure, thermal loads,

and mechanical loading. The undeformed cylindrical container geometry is shown in

Figure 4.1. Although a more realistic composite container would have portions made

of metal, the container problem defined here is fully composed of a 4-ply laminated

composite, except for the isotropic brackets near the symmetry plane at the center

of the structure. Furthermore, a realistic container would also have rounded corners

in the end caps instead of the sharp corners modeled here. Nevertheless, the chosen

geometry is valid for demonstration purposes.

Each of the four layers in the composite has a thickness of 0.025” (0.0635 cm) for

a total thickness of 0.1” (0.254 cm). Similar to the composite rings, the following

material properties are chosen for each layer:

E11 = 64.03 GPa (4.1)

E22 = 55.50 GPa (4.2)

E33 = 9.78 GPa (4.3)

ν12 = 0.081 (4.4)

ν23 = 0.303 (4.5)

ν31 = 0.0462805 (4.6)

G12 = G23 = G31 = 4.45 GPa (4.7)

α11 = α22 = 1 ppm/
◦C (4.8)

α33 = 30 ppm/◦C (4.9)

The following stacking sequences are used: a symmetric cross-ply sequence of

[0/90/90/0], a symmetric lay-up of [30/45/45/30], and an antisymmetric angle-ply

arrangement of [30/ − 30/30/ − 30]. Here the first layer is the outermost layer of

the structure, whereas the fourth layer is the innermost layer. In the cylindrical side-

walls, a 0◦ fiber angle corresponds to the circumferential direction and a 90◦ fiber

angle corresponds to the axial direction. Likewise, for the end caps, the 0◦ fiber angle
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R = 7.908” (20.086 cm) 
L1 = 1.768” (4.491 cm) 
L2 =  4.175” (10.605 cm) 
L3 = 1.0” (2.54 cm) 
H1 = 15.513” (39.403 cm) 
H2 = 1.175” (2.985 cm) 
H3 = 1” (2.54 cm) 
H4 = 2.04” (5.182 cm) 
t1 = 0.1” (0.254 cm) 
t2 = 0.2” (0.508 cm) 

Symmetry

60º
45º

Cylindrical
Axis

H4

H3

H2

H1

L3

L2

L1

R

t1

t2

Figure 4.1: Composite container geometry.
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corresponds to the circumferential direction. For the horizontal portions of the end

caps, a 90◦ fiber angle gives fiber aligned in the radial direction. Finally, for the non-

horizontal portions of the end caps (the -60◦ and 45◦ segments), a 90◦ fiber direction

is perpendicular to the circumferential direction, but parallel to the local container

surface. Once again, other fiber angles can be determined by a simple rotation in the

plane defined by the 0◦ and 90◦ fiber directions. The isotropic brackets to which the

mechanical load will be applied are taken to have a Youngs modulus of 64.03 GPa, a

shear modulus of 24.6 GPa, and a coefficient of thermal expansion of 11.7 ppm/C.

Finally, in order to produce a usable mesh using SEACAS based tools, a small hole

is drilled in the center of the end cap. This hole is small and no radial displacements are

applied to its edge such that it is equivalent to having a small plug of infinite stiffness

in the radial direction. Although other meshing schemes could have been used where

this step would have not been required, those schemes are not as straightforward as

the one used here where a 2D cross-section is used to sweep out the full 3D geometry.

Both continuum and combined shell/continuum approaches will be used to an-

alyze the composite container response. Because one purpose of this project is to

demonstrate the solution of composite problems using parallel processing, the entire

360◦ structure is modeled, as periodic boundary conditions were not parallel aware in

ADAGIO at the time these of analyses. For the purely continuum models, a mesh with

a total of 467,520 elements and 585,840 nodes is used. With each continuum node hav-

ing 3 degrees-of-freedom (DOF), the continuum model possesses a total of 1,757,520

DOF before the application of boundary conditions. The combined shell/continuum

approach consists of modeling all of the composite parts (everything but the brackets)

with shell elements and using continuum elements for the brackets. The combined con-

tinuum/shell approach uses a mesh with 123,360 elements and 126,000 nodes. With

each shell node having 6 DOF (three translations and three rotations), a total of

722,742 DOF are used in the combined shell/continuum approach, not counting the

reduction in DOF from the application of boundary conditions. Note that when the

4-layer composite is modeled using continuum elements, it is necessary to use a mini-

mum of 4 elements through the thickness (the approach chosen here) with orthotropic

properties input for each layer, whereas for the shell modeling, a single element can be

used to represent the entire lay-up with the laminate matrices input directly. Although
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using 1 element per layer is the minimum requirement for modeling composites using

continuum elements, it may be necessary to use more elements to adequately capture

all aspects of the composite response, such as bending effects in and around various

geometric features.

4.2 Response of Composite Containers to Pressure, Thermal, and

Mechanical Loadings

The composite containers are subjected to an internal pressurization of 1 psi (6894

Pa), followed by a 18 ◦F (10 ◦C) temperature change, and finally a 0.027 psi (187.69

Pa) distributed loading on the horizontal surface of the load bracket shown in Figure

4.1. The distributed loading of 0.027 psi corresponds to a 1 lb force subjected over the

36.734 in2 horizontal surface area of the load bracket. Recall that symmetry boundary

conditions are used at the top of the geometry shown in Figure 4.1 such that the

final results include the effects of loading on a lower bracket (shown) and an upper

bracket (not shown). Each of the three types of loads are ramped-up linearly over a

specified time range and then held constant for the rest of the analysis. The internal

pressurization increases from zero to its final value over the first 0.001 sec, the thermal

loading is applied from 0.0001 to 0.0005 sec, and finally the distributed mechanical

loading of the bracket is ramped-up over 0.0005 sec to 0.001 sec. A total of 1000

time steps are used for applying the internal pressurization, while 500 time steps are

used for applying both the thermal and mechanical loadings for a total of 2000 time

steps. It is unknown how close to optimality such a time stepping scenario is to one

requiring the least CPU usage. Note that the time variable here is used as the means

to control the loadings and that the composite response at any given load level is time

independent, as only linear elastic models are being employed.

The parallel finite element runs were performed using Sandia’s Rogue Linux clus-

ter. A summary of the number of processors used and the total CPU time expended

for each analysis is provided in Table 4.1. Most jobs were run in the slower Serial

queue of Rogue. The shell analyses were attempted using the probe nodal precondi-

tioner. For this preconditioner, only the [0/90/90/0] container problem was able to be

converged. Additional preliminary attempts to simulate the [30/45/45/30] and [30/-

30/30/-30] containers using the full tangent preconditioner with FETI linear solver
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Table 4.1: CPU usage for composite container analyses.

Stacking Model+ Elements Nodes DOF Rogue No. Total
Sequence Queue of CPU

CPU Time
(hr)

[0/90/90/0] C 467,520 585,840 1,757,520 Serial 36 2552

[30/45/45/30] C 467,520 585,840 1,757,520 Scico 36 3460∗

[30/−30/30/−30] C 467,520 585,840 1,757,520 Serial 36 2700

[0/90/90/0] S/C 123,360 126,000 722,742 Serial 36 1560

[30/45/45/30] S/C 123,360 126,000 722,742 – – –

[30/−30/30/−30] S/C 123,360 126,000 722,742 – – –

+ C = continuum, S = shell,

S/C = shell for all composite walls, continuum for load bracket
∗Estimated (some data lost due to restart)

were unsuccessful.

Figures 4.2-4.5 show the deformed cross-sections. Note that the deformations in

those figures have been multiplied by ten to aid viewing. Similar deformations result

in each case. It can be observed that much of the displacements in the end cap result

from bending response at the intersection of the various structural segments. Figures

4.6-4.8 show contour plots of the von Mises stresses for the purely continuum models

on a layer-by-layer basis. These von Mises stress distributions are comparable for the

stacking sequences considered. However, it is likely that the distribution in the actual

tensor components of the stress differ for each stacking sequence.

Figures 4.9-4.14 show the layerwise stress results due only to internal pressuriza-

tion for the [0/90/90/0] container modeled using solely continuum elements, whereas

Figures 4.15-4.20 give the corresponding layerwise stress results when shell elements

are used for everything except the load bracket. Note that the load bracket is not

shown in any of these figures for convenience. The agreement in the minimum and

maximum stresses between the two approaches are better for the outermost and in-
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Figure 4.2: Cross sectional view of composite container with [0/90/90/0] lay-up mod-

eled using only continuum elements with 10X mag. of final displacements.

nermost layers than for the inner two layers. These peaks and valleys in the stress

distributions occur at the corners between the various container segments where there

is significant bending. Hence, one possible explanation for the better agreement in

stresses on the outer and inner layers is that bending effects dominate in these re-

gions, the outermost and innermost layers naturally have higher bending strains than

the inner two layers, and the shell model is able to capture these bending effects fairly

well. A complete explanation requires additional study which was not possible under

the time constraints of this project.
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Figure 4.3: Cross sectional view of composite container with [0/90/90/0] lay-up mod-

eled using only primarily shell elements with 10X mag. of final displacements.

Figure 4.4: Cross sectional view of composite container with [30/45/45/30] lay-up

modeled using only continuum elements with 10X mag. of final displacements.
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Figure 4.5: Cross sectional view of composite container with [30/-30/30/-30] lay-up

modeled using only continuum elements with 10X mag. of final displacements.
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(a) (b)

(c) (d)

Figure 4.6: von Mises stresses due to internal pressurization, thermal loading, and

mechanical loading for the [0/90/90/0] container modeled using only continuum ele-

ments: (a) layer 1 (outermost layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost

layer).
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(a) (b)

(c) (d)

Figure 4.7: von Mises stresses due to internal pressurization, thermal loading, and

mechanical loading for the [30/45/45/30] container modeled using only continuum

elements: (a) layer 1 (outermost layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost

layer).
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(a) (b)

(c) (d)

Figure 4.8: von Mises stresses due to internal pressurization, thermal loading, and

mechanical loading for the [30/-30/30/-30] container modeled using only continuum

elements: (a) layer 1 (outermost layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost

layer).
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(a) (b)

(c) (d)

Figure 4.9: Radial stresses due to internal pressurization for the [0/90/90/0] container

modeled using only continuum elements: (a) layer 1 (outermost layer); (b) layer 2; (c)

layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.10: Axial stresses due to internal pressurization for the [0/90/90/0] container

modeled using only continuum elements: (a) layer 1 (outermost layer); (b) layer 2; (c)

layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.11: Circumferential stresses due to internal pressurization for the [0/90/90/0]

container modeled using only continuum elements: (a) layer 1 (outermost layer); (b)

layer 2; (c) layer 3; (d) layer 4 (innermost layer).



80

(a) (b)

(c) (d)

Figure 4.12: Radial-axial shear stresses due to internal pressurization for the

[0/90/90/0] container modeled using only continuum elements: (a) layer 1 (outermost

layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.13: Negative of axial-circumferential shear stresses due to internal pressuriza-

tion for the [0/90/90/0] container modeled using only continuum elements: (a) layer

1 (outermost layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.14: Negative of circumferential-radial shear stresses due to internal pressur-

ization for the [0/90/90/0] container modeled using only continuum elements: (a) layer

1 (outermost layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.15: Radial stresses due to internal pressurization for the [0/90/90/0] container

modeled using primarily shell elements: (a) layer 1 (outermost layer); (b) layer 2; (c)

layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.16: Axial stresses due to internal pressurization for the [0/90/90/0] container

modeled using primarily shell elements: (a) layer 1 (outermost layer); (b) layer 2; (c)

layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.17: Circumferential stresses due to internal pressurization for the [0/90/90/0]

container modeled using primarily shell elements: (a) layer 1 (outermost layer); (b)

layer 2; (c) layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.18: Radial-axial shear stresses due to internal pressurization for the

[0/90/90/0] container modeled using primarily shell elements: (a) layer 1 (outermost

layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.19: Negative of axial-circumferential shear stresses due to internal pressur-

ization for the [0/90/90/0] container modeled using primarily shell elements: (a) layer

1 (outermost layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost layer).
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(a) (b)

(c) (d)

Figure 4.20: Negative of circumferential-radial shear stresses due to internal pressur-

ization for the [0/90/90/0] container modeled using primarily shell elements: (a) layer

1 (outermost layer); (b) layer 2; (c) layer 3; (d) layer 4 (innermost layer).
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5 Comparison of Shell and Continuum Element Approaches

for Composite Modeling

In many cases of finite element analysis, using shell elements to model composite

structures is more convenient and efficient compared to using continuum elements.

First of all, in the model creation stage, it is easier to create meshes where a single

shell element is used in the thickness direction to represent a laminated structure than

to have to create separate element blocks for each layer as is required for a continuum

approach. However, the specification of the resulting material model for the shell case

requires careful attention in the case of non-symmetric laminates for which the sign

of the entries in the extensional-bending coupling stiffness matrix [B] is tied to the

direction of the shell normal. That is, in such cases, it is necessary to compute [B] with

the stacking sequence specified with the top layer corresponding to the side of shell

element defined by the positive element normal. Recall from basic composite theory

that the signs of entries in the extensional stiffness matrix [A] and the bending stiffness

matrix [D] do not depend on which side of the laminate is specified as the top for non-

symmetric lay-ups. The same holds true for the transverse shear stiffness matrix [Ats].

If the stacking sequence used in computing [B] is inadvertently the reverse of what it

should be (e.g., [10/20/30/40] instead of [40/30/20/10]), the magnitudes of the entries

in [B] will be correct, but the signs will be the opposite of what is required. Such a

mistake will likely lead to erroneous results for the integrated force and force-couple

resultants in addition to the layerwise stresses, depending on the exact load applied

and the non-symmetric stacking sequence being examined. Hence, care must be taken

in such cases to match the sign of the entries in [B] to the direction of the positive

normal of shell elements in question. On the other hand, since the principal material

directions are directly specified for each layer in the continuum approach, it is less

likely that a mistake will be made in reversing the stacking sequence for the case of a

non-symmetric laminate.

Another difference between the two approaches in ADAGIO/PRESTO concerns

the results output. For the case where continuum elements are used, the layerwise

stresses are directly available, but the integrated force and force-couple resultants must

be calculated in a post-processing stage, if they are desired. In most cases, the layerwise
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stress distribution is of more interest. However, for the current shell element approach

in ADAGIO/PRESTO, the reverse situation results where the integrated force and

force-couple resultants are directly available and the layerwise stress distribution must

be determined using ALGEBRA or another post-processing program. At present, an

alternative layered shell approach is being implemented in ADAGIO/PRESTO where

layerwise stresses will be directly available.

In some cases, the kinematic assumptions in the Mindlin shell theory used in

ADAGIO are invalid for the problem at hand. It is quite possible that the normal to

the laminate midplane in the undeformed configuration will not remain a straight line

as the structure deforms. In most situations this will not be the case, but the user

should always remain cognizant of the fact that Mindlin and other shell theories always

incorporate more restrictive deformation assumptions than a general three-dimensional

continuum theory. Whether the shell kinematic constraints are appropriate or not are,

of course, problem dependent and sometimes not known a priori.

Another potential issue with using shell elements to represent a composite structure

results from the fact that traditional shell elements are of zero thickness, regardless

of the material model being employed. For the current input interface available for

the composite shell model in ADAGIO, the [A], [Ats], [B], and [D] matrices which

correspond to pre-integrating the material response through the thickness direction

are input directly. In many cases, the structure being analyzed is purely a single

laminated composite structure for which the fact that traditional shell elements have

zero thickness is not an issue. However, this may not be the case if a structure is

being analyzed where a composite laminate is sandwiched between other materials,

especially if continuum elements are used for those other materials. In such situation,

using a zero thickness shell element will result in the surrounding materials having the

incorrect thickness or wrong offset, either of which may or may not significantly affect

the analysis results.

Next to accuracy of results and the time and effort required to create a model (i.e.,

the mesh and input deck generation), the biggest concern of an analyst is likely to be

the computational effort required to achieve a solution. At a minimum, at least one

hex element must be used per layer for the continuum modeling approach, whereas

a single shell element can used through the thickness of a laminate. The shell and
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hex elements typically used in ADAGIO/PRESTO each have a total of 24 degrees-of-

freedom. Hence, for a multilayer composite, using a continuum element approach will

result in a larger number of unknowns that need to be calculated. In some situations,

it may be necessary to use even more than one hex element through the thickness of

each composite layer. Exactly how many elements through the thickness of a layer are

required is, of course, problem dependent. Thus, in many cases, the computational

effort required for modeling composites using shell elements in ADAGIO is less than

that required when hex/brick continuum elements are used. However, in some cases,

ADAGIO has a much harder time converging, if at all, when shell elements are used.

Many problems of interest involve axisymmetric geometries. However, in analyz-

ing these and other composite structures, analysts must be careful not to rely too

much on intuition gained from isotropic analyses. For instance, in the case of an

isotropic structure possessing axisymmetric geometry under axisymmetric loads, no

circumferential displacements will occur. Rather, in such a case, the structure can

only expand/contract along the radial and axial directions. Hence, such a situation

can be modeled by considering only a small sector (pie cut) and applying boundary

conditions on the circumferential edges specifying that no circumferential displace-

ments occur. However, in the case of a laminated composite structure possessing

axisymmetric geometry under axisymmetric loads, circumferential displacements may

or may not occur depending on the laminate stacking sequence. Thus, when a small

sector is modeled for a such composite structure, it is not correct to simply apply a

condition of no circumferential displacements along the sector circumferential edges.

Rather, true cyclic periodic boundary conditions must be used such that the sector

modeled deforms in a way that the periodicity is preserved in the response. That is,

the response is still axisymmetric in that it is independent of the angular position

when expressed using an appropriate cylindrical coordinate system, even though it

may involve circumferential displacements. For example, if a 10◦ sector is modeled,

the deformations must be such that taking 36 of these deformed 10◦ sectors, the ends

would still fit together to form a complete 360◦ ring with no gaps.

In general, continuum finite element modeling of composite structures appears to

be more robust than shell finite element modeling in terms of determining the lami-

nated behavior accurately and in achieving a solution using ADAGIO. However, the
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price paid is that the model creation phase can be more time consuming for an analyst

and the model solution phase can be more computationally expensive compared to a

shell model which can achieve the same accuracy for many problems. Of course, many

times a little bit of effort upfront can be used to create a model which is not need-

lessly larger than required. For instance, periodic boundary conditions can be used

for axisymmetric structures. There is, however, a practical limit on how small such a

sector can be in such a case. Regardless of whether continuum or shell elements are

used, careful attention must be paid when creating and analyzing a composite model,

as much of the intuition acquired from the analysis of isotropic structures cannot be

used.
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6 Summary

There have been several significant accomplishments over the course of this ASC AD

project that are aligned with the general goals of Advanced Deployment projects:

1. A coding error was uncovered and corrected in the “nlve thermoset” model being

employed in the ADAGIO computations.

2. For the first time, the isotropic nonlinear viscoelastic material model has been

run in parallel using the SIERRA code.

3. A realistic DP application has been analyzed for a customer demonstrating new

capabilities that are simply unavailable in commercial codes.

4. Additional flexibility was added to the orientation initialization routines of the

orthotropic linear elastic model, based upon needs identified by the composite

container analyses performed here.

5. The ability to analyze large composite problems using Sandia’s SIERRA/ADAGIO

code was successfully demonstrated. Previously, any such composite modeling

at Sandia required the use of commercial codes which are limited in terms of

problem size and in some cases by the unavailability of proper cyclic periodic

boundary conditions.

6. A comparative study of modeling composites using continuum versus shell ele-

ments has been completed and the resulting general guidelines for analysts have

been detailed herein.
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8 Appendix A: ADAGIO Input Deck for the Adhesive

Joint Problem

begin sierra nlve axisymmetric joint process

title TEMPO analysis of bonded cylinder history

### Problem units: length=meters, stress=pascals, temp=Kelvin ###

### force=newtons ###

### Function definitions ###

############################

###

### Define the temperature history for the problem

###

begin definition for function TEMP_HIST_STAGE1

type is piecewise linear

ordinate is temperature

abscissa is time

begin values

0.0 358.15 ### 85 C (start at Tref) ###

1500.0 333.15 ### 60 C (cool at 1 C/min) ###

1680.0 318.15 ### 45 C (cool at 5 C/min) ###

1980.0 293.15 ### 20 C (cool at 5 C/min) ###

2000.0 293.15 ### 20 C (pre-load to 18000lbs) ###

2500.0 318.15 ### 45 C (heat at 3 C/min + add preload @ 240 lbs/C) ###

3000.0 343.15 ### 70 C (heat at 3 C/min + add preload @ 240 lbs/C) ###

10200.0 343.15 ### 70 C (hold for 120 mins) ###

10700.0 318.15 ### 45 C (cool at 3 C/min + reduce preload @ 240 lbs/C) ###

11200.0 293.15 ### 20 C (cool at 3 C/min + reduce preload to 18000lbs) ###

12700.0 218.15 ### -55 C (cool at 3 C/min) ###

14200.0 293.15 ### 20 C (reheat at 3 C/min) ###

end values

end definition for function TEMP_HIST_STAGE1

###

### Define the axial pressure response to be applied to the inner cylinder

### Note pressures are applied to 1/4 cylinder X-section ###

### (total load) = pressure x cross-sectional area ###

### for axicyl9045.g there are 45 elems and 184 nodes on load plane ###

begin definition for function apress

type is piecewise linear

ordinate is pressure

abscissa is time

begin values

0.0 0.0 ### 85 C (start at Tref) ###

1500.0 0.0 ### 60 C (cool at 1 C/min) ###

1680.0 0.0 ### 45 C (cool at 5 C/min) ###

1980.0 0.0 ### 20 C (cool at 5 C/min) ###

2000.0 56.034E6 ### 20 C (pre-load to 18000lbs=80067.6N for whole X-section)

2500.0 74.712E6 ### 45 C (heat at 3 C/min + add preload @ 240 lbs/C) ###

3000.0 93.390E6 ### 70 C (heat at 3 C/min + add preload @ 240 lbs/C) ###

10200.0 93.390E6 ### 70 C (hold for 120 mins) ###

10700.0 74.712E6 ### 45 C (cool at 3 C/min + reduce preload @ 240 lbs/C) ###

11200.0 56.034E6 ### 20 C (cool at 3 C/min + reduce preload to 18000lbs) ###

12700.0 15.565E6 ### -55 C (cool at 3 C/min and reduce preload to 5000 lbs) ###

14200.0 56.034E6 ### 20 C (reheat at 3 C/min) ###

end values

end definition for function apress

###
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### This defines a null function

###

begin definition for function lzero

type is piecewise linear

ordinate is lzero

abscissa is time

begin values

0.0 0.0

1.0e+10 0.000

end values

end definition for function lzero

###

### Define the polymer thermal strain as a function of temperature.

### This is merely a place holder to populate a SIERRA input.

### The nonlinear viscoelastic thermoset model is thermodynamically consistent

### for finite strains.

### In finite strain mechanics, there is no thermal strain definition.

### Rather the constitutive equation predicts a pressure corresponding

### a temperature change. SIERRA wants something anyway so here it is.

begin definition for function ADH_THERMAL_STRAIN

type is piecewise linear

ordinate is strain

abscissa is temperature

begin values

-1000.0 0.0

0.0 0.0

1000.0 0.0

end values

end definition for function ADH_THERMAL_STRAIN

###

### This is the typical thermal strain definition as a function of temperature

### for the metal.

begin definition for function AL_THERMAL_STRAIN

type is piecewise linear

ordinate is strain

abscissa is temperature

begin values

-100.0 -0.00234 ### 6061T6 Alum Linear CTE=2.34E-5/C ###

500.0 0.0117

end values

end definition for function AL_THERMAL_STRAIN

### Direction definitions ###

############################

define direction x with vector 1.0 0.0 0.0

define direction y with vector 0.0 1.0 0.0

define direction z with vector 0.0 0.0 1.0

### Material definitions ###

############################

begin property specification for material ALuminum_6061T6

density = 2710.0

thermal strain function = AL_THERMAL_STRAIN

begin parameters for model elastic

youngs modulus = 6.9e+10

poissons ratio = 0.33

end parameters for model elastic
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end property specification for material ALuminum_6061T6

begin property specification for material ALuminum_1100

density = 2710.0

thermal strain function = AL_THERMAL_STRAIN

begin parameters for model elastic

youngs modulus = 6.9e+10

poissons ratio = 0.33

end parameters for model elastic

end property specification for material ALuminum_1100

begin property specification for material ALuminum_1100soft

density = 2710.0

thermal strain function = AL_THERMAL_STRAIN

begin parameters for model elastic

youngs modulus = 1.0E+6

poissons ratio = 0.33

end parameters for model elastic

end property specification for material ALuminum_1100soft

begin property specification for material black_adhesive

density = 1176.0

thermal strain function = ADH_THERMAL_STRAIN

begin parameters for model nlve_thermoset

bulk modulus = 6.0e9

shear modulus = 0.68e9

1psi prony 1 = 0.0

1psi prony 2 = 0.0

1psi prony 3 = 0.0

1psi prony 4 = 0.0

1psi prony 5 = 0.0

1psi prony 6 = 0.0

1psi prony 7 = 0.0

1psi prony 8 = 0.0

1psi prony 9 = 0.0

1psi prony 10 = 0.0

1psi prony 11 = 0.0

1psi prony 12 = 0.0

1psi prony 13 = 0.0

1psi prony 14 = 0.0

1psi prony 15 = 0.0

1psi prony 16 = 0.0

1psi prony 17 = 0.0

1psi prony 18 = 0.0

1psi prony 19 = 0.0

1psi prony 20 = 0.0

1psi prony 21 = 0.0

1psi prony 22 = 0.0

1psi prony 23 = 0.0

1psi prony 24 = 0.0

1psi prony 25 = 0.0

1psi prony 26 = 0.0

1psi prony 27 = 0.0

1psi prony 28 = 0.0

1psi prony 29 = 0.0

1psi prony 30 = 0.0

2psi prony 1 = 0.0
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2psi prony 2 = 0.0

2psi prony 3 = 0.0

2psi prony 4 = 0.0

2psi prony 5 = 0.0

2psi prony 6 = 0.0

2psi prony 7 = 0.0

2psi prony 8 = 0.0

2psi prony 9 = 0.0

2psi prony 10 = 0.0

2psi prony 11 = 0.0

2psi prony 12 = 0.0

2psi prony 13 = 0.0

2psi prony 14 = 0.0

2psi prony 15 = 0.0

2psi prony 16 = 0.0

2psi prony 17 = 0.0

2psi prony 18 = 0.0

2psi prony 19 = 0.0

2psi prony 20 = 0.0

2psi prony 21 = 0.0

2psi prony 22 = 0.0

2psi prony 23 = 0.0

2psi prony 24 = 0.0

2psi prony 25 = 0.0

2psi prony 26 = 0.0

2psi prony 27 = 0.0

2psi prony 28 = 0.0

2psi prony 29 = 0.0

2psi prony 30 = 0.0

3psi prony 1 = 0.0

3psi prony 2 = 0.0

3psi prony 3 = 0.0

3psi prony 4 = 0.0

3psi prony 5 = 0.0

3psi prony 6 = 0.0

3psi prony 7 = 0.0

3psi prony 8 = 0.0

3psi prony 9 = 0.0

3psi prony 10 = 0.0

3psi prony 11 = 0.0

3psi prony 12 = 0.0

3psi prony 13 = 0.0

3psi prony 14 = 0.0

3psi prony 15 = 0.0

3psi prony 16 = 0.0

3psi prony 17 = 0.0

3psi prony 18 = 0.0

3psi prony 19 = 0.0

3psi prony 20 = 0.0

3psi prony 21 = 0.0

3psi prony 22 = 0.0

3psi prony 23 = 0.0

3psi prony 24 = 0.0

3psi prony 25 = 0.0

3psi prony 26 = 0.0

3psi prony 27 = 0.0

3psi prony 28 = 0.0

3psi prony 29 = 0.0

3psi prony 30 = 0.0

4psi prony 1 = 0.0

4psi prony 2 = 0.0
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4psi prony 3 = 0.0

4psi prony 4 = 0.0

4psi prony 5 = 0.0

4psi prony 6 = 0.0

4psi prony 7 = 0.0

4psi prony 8 = 0.0

4psi prony 9 = 0.0

4psi prony 10 = 0.0

4psi prony 11 = 0.0

4psi prony 12 = 0.0

4psi prony 13 = 0.0

4psi prony 14 = 0.0

4psi prony 15 = 0.0

4psi prony 16 = 0.0

4psi prony 17 = 0.0

4psi prony 18 = 0.0

4psi prony 19 = 0.0

4psi prony 20 = 0.0

4psi prony 21 = 0.0

4psi prony 22 = 0.0

4psi prony 23 = 0.0

4psi prony 24 = 0.0

4psi prony 25 = 0.0

4psi prony 26 = 0.0

4psi prony 27 = 0.0

4psi prony 28 = 0.0

4psi prony 29 = 0.0

4psi prony 30 = 0.0

1psi ref = 6.4042e+05

i1 deriv 1psi = 0.0

2psi ref = 5.6998e+05

t deriv 2psi = -1.2755e+03

3psi ref = 1.1684e+03

t deriv 3psi = -3.1239e+00

4psi ref = 7.2275e-01

t deriv 4psi = 6.9662e-04

t 2deriv 4psi = 4.3610e-06

reference temp = 358.15

reference density = 1176

wlf c1 = 10

wlf c2 = 67

b shift constant = 3.0706e+05

shift ref value = 3.1390e+04

wwbeta 1psi = 0.18

wwtau 1psi = 5

wwbeta 2psi = 0.18

wwtau 2psi = 0.00015

wwbeta 3psi = 0.18

wwtau 3psi = 5

wwbeta 4psi = 0.15

wwtau 4psi = 2

double integ factor = 0

rubbery bulk mod = 4800000000

i1 deriv r_bulk = 0

glassy bulk mod = 6000000000

i1 deriv g_bulk = 0

rubbery shear mod = 9700000

t deriv r_shear = 0

i2 deriv r_shear = 0

glassy shear mod = 680000000

t deriv g_shear = -1500000
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rubbery vol cte = 0.00053

t deriv r_cte = 1e-7

glassy vol cte = 0.000195

t deriv g_cte = 0

rubbery hcapacity = 3020

t deriv r_hcapacity = 3

glassy hcapacity = 2420

t deriv g_hcapacity = 3

GLASS TRANSITION TEM = 358.15

PSI EQ 2I = 4.0761e+06

PSI EQ IT = -2.1633e+03

PSI EQ 2T = -7.2857e+00

PSI EQ 2H = 8.2483e+03

PSI EQ 3I = 0.0

PSI EQ 2IT = -9000.0

PSI EQ I2T = 1.0284e+01

PSI EQ 3T = 7.6802e-03

PSI EQ 2HT = 0.0

PSI EQ 4I = 0.0

PSI EQ 3IT = 0.0

PSI EQ 2I2T = 0.0

PSI EQ I3T = 0.0

PSI EQ 4T = -8.7074e-05

PSI EQ 4H = 0.0

PSI POT IT = -1.1684e+03

PSI POT 2T = -7.2275e-01

PSI POT 2IT = 0.0

PSI POT I2T = 6.2479e+00

PSI POT 3T = -2.0899e-03

PSI POT 4T = -2.6166e-05

relax time 1 = 1e-13

relax time 2 = 1e-12

relax time 3 = 1e-11

relax time 4 = 1e-10

relax time 5 = 1e-09

relax time 6 = 1e-08

relax time 7 = 1e-07

relax time 8 = 1e-06

relax time 9 = 3.16e-06

relax time 10 = 1.0e-05

relax time 11 = 3.16e-05

relax time 12 = 1.0e-04

relax time 13 = 3.16e-04

relax time 14 = 1.0e-03

relax time 15 = 3.16e-03

relax time 16 = 1.0e-02

relax time 17 = 3.16e-02

relax time 18 = 1.0e-01

relax time 19 = 3.16e-01

relax time 20 = 1.0

relax time 21 = 3.16

relax time 22 = 10.0

relax time 23 = 31.6

relax time 24 = 100

relax time 25 = 316

relax time 26 = 1000

relax time 27 = 3160

relax time 28 = 10000

relax time 29 = 31600

relax time 30 = 100000

end parameters for model nlve_thermoset
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end property specification for material black_adhesive

### BV Problem definitions ###

############################

begin finite element model loading1

Database Name = axicyl9045.g

Database Type = exodusII

begin parameters for block block_1

material ALuminum_6061T6

solid mechanics use model elastic

end parameters for block block_1

begin parameters for block block_2

material black_adhesive

solid mechanics use model nlve_thermoset

end parameters for block block_2

begin parameters for block block_3

material ALuminum_6061T6

solid mechanics use model elastic

end parameters for block block_3

begin parameters for block block_5

material ALuminum_1100soft

solid mechanics use model elastic

end parameters for block block_5

end finite element model loading1

begin finite element model loading2

Database Name = axicyl9045.g

Database Type = exodusII

begin parameters for block block_1

material ALuminum_6061T6

solid mechanics use model elastic

end parameters for block block_1

begin parameters for block block_2

material black_adhesive

solid mechanics use model nlve_thermoset

end parameters for block block_2

begin parameters for block block_3

material ALuminum_6061T6

solid mechanics use model elastic

end parameters for block block_3

begin parameters for block block_5

material ALuminum_1100

solid mechanics use model elastic

end parameters for block block_5

end finite element model loading2



102

begin adagio procedure stage1

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for adagio region adagio

time increment = 10.0

end parameters for adagio region adagio

end time stepping block p1

begin time stepping block p2

start time = 60.0

begin parameters for adagio region adagio

time increment = 30.0

end parameters for adagio region adagio

end time stepping block p2

begin time stepping block p3

start time = 1500.0

begin parameters for adagio region adagio

time increment = 12.0

end parameters for adagio region adagio

end time stepping block p3

begin time stepping block p4

start time = 1680.0

begin parameters for adagio region adagio

time increment = 25.0

end parameters for adagio region adagio

end time stepping block p4

termination time = 1980.0

end time control

begin adagio region adagio

use finite element model loading1

options = thermalstrain

prescribed nodal temperature using function TEMP_HIST_STAGE1

### output description ###

begin results output output_adagio1

Database Name = axicyl9045stage1p.e

Database Type = exodusII

element Variables = rotated_stress as stress

element Variables = temperature as temp

element Variables = MAT%nlve_thermoset(242|243|263|264|265|266|267|268)

global Variables = timestep as timestep

nodal Variables = force_external as f_ext

nodal Variables = displacement as displ

# nodal Variables = force_internal as f_int

start time = 0.0

at time 0.0 increment = 30.0

at time 60.0 increment = 720.0

at time 1500.0 increment = 60.0

at time 1680.0 increment = 60.0
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at time 1980.0 increment = 2.0

termination time = 1980.0

end results output output_adagio1

### definition of BCs ###

begin prescribed displacement

node set = nodelist_20

direction = z

function = lzero

scale factor = 0.0

end prescribed displacement

begin prescribed displacement

node set = nodelist_21

direction = x

function = lzero

scale factor = 0.0

end prescribed displacement

begin prescribed displacement

node set = nodelist_8

direction = y

function = lzero

scale factor = 0.0

end prescribed displacement

#### Contacts ######

begin contact definition jstick1

enforcement = tied

contact surface surf_14 contains surface_14

contact surface surf_15 contains surface_15

begin interaction

master = surf_14

slave = surf_15

normal tolerance = 1.0e-5

tangential tolerance = 1.0e-5

capture tolerance = 1.0e-7

# tension release= 1.0E+25

end interaction

end contact definition jstick1

begin contact definition sstick1

enforcement = tied

contact surface surf_16 contains surface_16

contact surface surf_17 contains surface_17

begin interaction

master = surf_16

slave = surf_17

normal tolerance = 1.0e-5

tangential tolerance = 1.0e-5

capture tolerance = 1.0e-7

# tension release= 1.0E+25

end interaction
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end contact definition sstick1

### ------------------###

### Solver definition ###

### ------------------###

Loadstep predictor using line search type secant

begin adagio solver cg

Target Relative Residual = 1.0e-6

Target Residual = 0.008 during p1

Target Residual = 0.008 during p2

Target Residual = 0.008 during p3

Target Residual = 0.008 during p4

Maximum Iterations = 30000

Minimum Iterations = 10

Orthogonality measure for reset = 0.20

Line Search type secant

iteration print = 50

nodal preconditioning type = elastic

end adagio solver cg

predictor scale factor = 1.0 during p1

predictor scale factor = 1.0 during p2

predictor scale factor = 1.0 during p3

predictor scale factor = 1.0 during p4

end adagio region adagio

end adagio procedure stage1

###########################################################################

begin adagio procedure stage2

begin procedural transfer AgioToAgio

include variables from region adagio in block block_1

include variables from region adagio in block block_2

include variables from region adagio in block block_3

include variables from region adagio in block block_5

end procedural transfer AgioToAgio

begin time control

begin time stepping block p5

start time = 1980.0

begin parameters for adagio region adagio

time increment = 0.1

end parameters for adagio region adagio

end time stepping block p5

begin time stepping block p6

start time = 1981.0

begin parameters for adagio region adagio

time increment = 0.25

end parameters for adagio region adagio

end time stepping block p6

begin time stepping block p7

start time = 2000.0

begin parameters for adagio region adagio
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time increment = 25.0

end parameters for adagio region adagio

end time stepping block p7

begin time stepping block p8

start time = 2500.0

begin parameters for adagio region adagio

time increment = 20.0

end parameters for adagio region adagio

end time stepping block p8

begin time stepping block p9

start time = 3000.0

begin parameters for adagio region adagio

time increment = 5

end parameters for adagio region adagio

end time stepping block p9

begin time stepping block p10

start time = 3100.0

begin parameters for adagio region adagio

time increment = 50

end parameters for adagio region adagio

end time stepping block p10

begin time stepping block p11

start time = 10200.0

begin parameters for adagio region adagio

time increment = 20.0

end parameters for adagio region adagio

end time stepping block p11

begin time stepping block p12

start time = 10700.0

begin parameters for adagio region adagio

time increment = 25.0

end parameters for adagio region adagio

end time stepping block p12

begin time stepping block p13

start time = 11200.0

begin parameters for adagio region adagio

time increment = 25.0

end parameters for adagio region adagio

end time stepping block p13

begin time stepping block p14

start time = 12700.0

begin parameters for adagio region adagio

time increment = 25.0

end parameters for adagio region adagio

end time stepping block p14

termination time = 14200.0

end time control

begin adagio region adagio

use finite element model loading2

options = thermalstrain
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prescribed nodal temperature using function TEMP_HIST_STAGE1

### output description ###

begin results output output_adagio2

Database Name = axicyl9045stage2.e

Database Type = exodusII

element Variables = rotated_stress as stress

element Variables = temperature as temp

element Variables = MAT%nlve_thermoset(242|243|263|264|265|266|267|268)

global Variables = timestep as timestep

nodal Variables = force_external as f_ext

nodal Variables = displacement as displ

# nodal Variables = force_internal as f_int

start time = 1980.0

at time 1980.0 increment = 2.0

at time 2000.0 increment = 100.0

at time 2500.0 increment = 100.0

at time 3000.0 increment = 1000.0

at time 10200.0 increment = 100.0

at time 10700.0 increment = 100.0

at time 11200.0 increment = 300.0

at time 12700.0 increment = 300.0

termination time = 14200.0

end results output output_adagio2

### definition of BCs ###

begin prescribed displacement

node set = nodelist_20

direction = z

function = lzero

scale factor = 0.0

end prescribed displacement

begin prescribed displacement

node set = nodelist_21

direction = x

function = lzero

scale factor = 0.0

end prescribed displacement

begin prescribed displacement

node set = nodelist_8

direction = y

function = lzero

scale factor = 0.0

end prescribed displacement

begin pressure

surface = surface_13

function = apress

scale factor = -1.0

end pressure

#### Contacts ######

begin contact definition jstick2
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enforcement = tied

contact surface surf_14 contains surface_14

contact surface surf_15 contains surface_15

begin interaction

master = surf_14

slave = surf_15

normal tolerance = 1.0e-5

tangential tolerance = 1.0e-5

capture tolerance = 1.0e-7

# tension release= 1.0E+25

end interaction

end contact definition jstick2

begin contact definition sstick2

enforcement = tied

contact surface surf_16 contains surface_16

contact surface surf_17 contains surface_17

begin interaction

master = surf_16

slave = surf_17

normal tolerance = 1.0e-5

tangential tolerance = 1.0e-5

capture tolerance = 1.0e-7

# tension release= 1.0E+25

end interaction

end contact definition sstick2

### ------------------###

### Solver definition ###

### ------------------###

Loadstep predictor using line search type secant

begin adagio solver cg

Target Relative Residual = 1.0e-4

Target Residual = 0.00001

Maximum Iterations = 25000

# Minimum Iterations = 1

Orthogonality measure for reset = 0.2

Line Search type secant

iteration print = 50

nodal preconditioning type = elastic

end adagio solver cg

# End adagio multilevel solver MLcontact

predictor scale factor = 1.0 during p5

predictor scale factor = 1.0 during p6

predictor scale factor = 1.0 during p7

predictor scale factor = 1.0 during p8

predictor scale factor = 0.0 during p9

predictor scale factor = 1.0 during p10

predictor scale factor = 1.0 during p11

predictor scale factor = 1.0 during p12

predictor scale factor = 1.0 during p13

predictor scale factor = 1.0 during p14

end adagio region adagio
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end adagio procedure stage2

end sierra nlve axisymmetric joint process
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9 Appendix B: ADAGIO Input Deck for [30/60/50/10]

Ring B Modeled Using Continuum Elements

begin sierra ring

begin definition for function delta

type is piecewise linear

abscissa is time

ordinate is delta

begin values

0.0 0.0

1.0 1.0

end values

end definition for function delta

begin definition for function zero

type is constant

begin values

0.0

end values

end definition for function zero

begin definition for function CTE11

type is piecewise linear

ordinate is CTE11

begin values

250.0 0.0

450.0 111.111e-6

end values

end definition for function CTE11

begin definition for function CTE22

type is piecewise linear

ordinate is CTE22

begin values

250.0 0.0

450.0 111.111e-6

end values

end definition for function CTE22

begin definition for function CTE33

type is piecewise linear

ordinate is CTE33

begin values

250.0 0.0

450.0 333.333e-5

end values

end definition for function CTE33

begin definition for function pressure

type is piecewise linear

ordinate is pressure

abscissa is time

begin values

0.0 0.0

0.0001 0.01

0.001 1.0

end values

end definition for function pressure
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define point ptO with coordinates 0.0 0.0 0.0

define point ptZ with coordinates 0.0 1.0 0.0

define point ptXZ with coordinates 1.0 0.0 0.0

define coordinate system sysC cylindrical with point ptO point ptZ point ptXZ

define coordinate system sysR rectangular with point ptO point ptZ point ptXZ

define direction Axis with vector 0.0 1.0 0.0

define point PointOnAxis with coordinates 0.0 0.0 0.0

begin property specification for material ring1

density = 0.000140426

begin parameters for model elastic_3d_orthotropic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

youngs modulus aa = 9.28691e6

youngs modulus bb = 8.04972e6

youngs modulus cc = 1.41849e6

poissons ratio ab = 0.081

poissons ratio bc = 0.303

poissons ratio ca = 0.0462805

shear modulus ab = 0.645428e6

shear modulus bc = 0.645428e6

shear modulus ca = 0.645428e6

coordinate system = sysC

direction for rotation = 2

alpha = 90.0

second direction for rotation = 3

second alpha = 120.0

thermal strain aa function = CTE11

thermal strain bb function = CTE22

thermal strain cc function = CTE33

end parameters for model elastic_3d_orthotropic

begin parameters for model elastic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

end parameters for model elastic

end property specification for material ring1

begin property specification for material ring2

density = 0.000140426

begin parameters for model elastic_3d_orthotropic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

youngs modulus aa = 9.28691e6

youngs modulus bb = 8.04972e6

youngs modulus cc = 1.41849e6

poissons ratio ab = 0.081

poissons ratio bc = 0.303

poissons ratio ca = 0.0462805

shear modulus ab = 0.645428e6

shear modulus bc = 0.645428e6

shear modulus ca = 0.645428e6

coordinate system = sysC
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direction for rotation = 2

alpha = 90.0

second direction for rotation = 3

second alpha = 150.0

thermal strain aa function = CTE11

thermal strain bb function = CTE22

thermal strain cc function = CTE33

end parameters for model elastic_3d_orthotropic

begin parameters for model elastic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

end parameters for model elastic

end property specification for material ring2

begin property specification for material ring3

density = 0.000140426

begin parameters for model elastic_3d_orthotropic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

youngs modulus aa = 9.28691e6

youngs modulus bb = 8.04972e6

youngs modulus cc = 1.41849e6

poissons ratio ab = 0.081

poissons ratio bc = 0.303

poissons ratio ca = 0.0462805

shear modulus ab = 0.645428e6

shear modulus bc = 0.645428e6

shear modulus ca = 0.645428e6

coordinate system = sysC

direction for rotation = 2

alpha = 90.0

second direction for rotation = 3

second alpha = 140.0

thermal strain aa function = CTE11

thermal strain bb function = CTE22

thermal strain cc function = CTE33

end parameters for model elastic_3d_orthotropic

begin parameters for model elastic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

end parameters for model elastic

end property specification for material ring3

begin property specification for material ring4

density = 0.000140426

begin parameters for model elastic_3d_orthotropic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

youngs modulus aa = 9.28691e6

youngs modulus bb = 8.04972e6

youngs modulus cc = 1.41849e6

poissons ratio ab = 0.081

poissons ratio bc = 0.303
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poissons ratio ca = 0.0462805

shear modulus ab = 0.645428e6

shear modulus bc = 0.645428e6

shear modulus ca = 0.645428e6

coordinate system = sysC

direction for rotation = 2

alpha = 90.0

second direction for rotation = 3

second alpha = 100.0

thermal strain aa function = CTE11

thermal strain bb function = CTE22

thermal strain cc function = CTE33

end parameters for model elastic_3d_orthotropic

begin parameters for model elastic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

end parameters for model elastic

end property specification for material ring4

begin finite element model mesh1

Database Name = wedge.g

Database Type = exodusII

begin parameters for block block_1

material ring1

solid mechanics use model elastic_3d_orthotropic

hourglass stiffness = 0.05

end parameters for block block_1

begin parameters for block block_2

material ring2

solid mechanics use model elastic_3d_orthotropic

hourglass stiffness = 0.05

end parameters for block block_2

begin parameters for block block_3

material ring3

solid mechanics use model elastic_3d_orthotropic

hourglass stiffness = 0.05

end parameters for block block_3

begin parameters for block block_4

material ring4

solid mechanics use model elastic_3d_orthotropic

hourglass stiffness = 0.05

end parameters for block block_4

end finite element model mesh1

begin adagio procedure load

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for adagio region contain_region
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number of time steps = 10

end parameters for adagio region contain_region

end time stepping block p1

termination time = 1.e-3

end time control

begin adagio region contain_region

use finite element model mesh1

begin results output ring_output

Database Name = wedge.e

Database Type = exodusII

nodal variables = displacement as displ

element variables = rotated_stress as stress

element variables = cstress as cstress

element variables = ax

element variables = ay

element variables = az

element variables = bx

element variables = by

element variables = bz

element variables = cx

element variables = cy

element variables = cz

end results output ring_output

begin user output

block = block_1 block_2 block_3 block_4

transform element variable rotated_stress to coordinate system sysC as cstress

end user output

begin user variable cstress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable cstress

# inside surface: pressure loading

begin pressure

surface = surface_100

function = pressure

end pressure

# cyclic symmetry

begin periodic

master = nodelist_5

slave = nodelist_6

search tolerance = 1.e-6

reference axis = Axis

point on axis = PointOnAxis

theta = 0.5

end periodic

Loadstep predictor using line search type secant
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Begin adagio solver cg

target relative residual = 1.0e-5

acceptable relative residual = 5.e-3

Maximum Iterations = 10000

Minimum Iterations = 0

Line Search type secant

iteration print = 1

preconditioner = probe

end adagio solver cg

end adagio region contain_region

end adagio procedure load

end sierra ring
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10 Appendix C: ADAGIO Input Deck for [30/60/50/10]

Ring B Modeled Using Shell Elements

begin sierra wedge

begin definition for function delta

type is piecewise linear

abscissa is time

ordinate is delta

begin values

0.0 0.0

1.0 1.0

end values

end definition for function delta

begin definition for function zero

type is constant

begin values

0.0

end values

end definition for function zero

begin definition for function pressure

type is piecewise linear

ordinate is pressure

abscissa is time

begin values

0.0 0.0

0.0001 0.01

0.001 1.0

end values

end definition for function pressure

begin definition for function fnth11

type is piecewise linear

abscissa is temperature

ordinate is Nth11

begin values

300.0 0.0

400.0 5.2742

end values

end definition for function fnth11

begin definition for function fnth22

type is piecewise linear

abscissa is temperature

ordinate is Nth22

begin values

300.0 0.0

400.0 5.1418

end values

end definition for function fnth22

begin definition for function fnth12

type is piecewise linear

abscissa is temperature

ordinate is Nth12

begin values
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300.0 0.0

400.0 0.264331

end values

end definition for function fnth12

begin definition for function fmth11

type is piecewise linear

abscissa is temperature

ordinate is Mth11

begin values

300.0 0.0

400.0 -0.000177736

end values

end definition for function fmth11

begin definition for function fmth22

type is piecewise linear

abscissa is temperature

ordinate is Mth22

begin values

300.0 0.0

400.0 0.000177736

end values

end definition for function fmth22

begin definition for function fmth12

type is piecewise linear

abscissa is temperature

ordinate is Mth12

begin values

300.0 0.0

400.0 0.000156975

end values

end definition for function fmth12

define point ptO with coordinates 0.0 0.0 0.0

define point ptZ with coordinates 0.0 1.0 0.0

define point ptXZ with coordinates 1.0 0.0 0.0

define coordinate system sysC cylindrical with point ptO point ptZ point ptXZ

define coordinate system sysR rectangular with point ptO point ptZ point ptXZ

define direction Axis with vector 0.0 1.0 0.0

define point PointOnAxis with coordinates 0.0 0.0 0.0

define direction deg10 with vector 0.984807753 0.0 0.173648177

define direction deg100 with vector -0.173648177 0.0 -0.984807753

begin property specification for material wedge1

density = 0.000140426

thermal strain function = zero

begin parameters for model elastic_laminate

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

a11 = 664.752e2

a12 = 284.527e2

a16 = 36.5165e2
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a22 = 640.923e2

a26 = 11.0592e2

a66 = 283.494e2

a44 = 645.428e1

a45 = 0.0

a55 = 645.428e1

b11 = -20.9654

b12 = 17.7664

b16 = 2.18347

b22 = -14.5674

b26 = 0.641858

b66 = 17.7664

d11 = 619.621e-3

d12 = 191.989e-3

d16 = 99.168e-3

d22 = 558.677e-3

d26 = -65.7699e-3

d66 = 191.128e-3

coordinate system = sysC

direction for rotation = 1

alpha = 0.0

theta = 0.0

nth11 function = fnth11

nth22 function = fnth22

nth12 function = fnth12

mth11 function = fmth11

mth22 function = fmth22

mth12 function = fmth12

end parameters for model elastic_laminate

begin parameters for model elastic

youngs modulus = 9.28691e6

shear modulus = 3.56366e6

end parameters for model elastic

end property specification for material wedge1

begin shell section shell_1

thickness scale factor = 0.01

end shell section shell_1

begin finite element model mesh1

Database Name = wedge.g

Database Type = exodusII

begin parameters for block block_1

material wedge1

solid mechanics use model elastic_laminate

section = shell_1

end parameters for block block_1

end finite element model mesh1

begin adagio procedure load

begin time control

begin time stepping block p1

start time = 0.0

begin parameters for adagio region contain_region

number of time steps = 10
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end parameters for adagio region contain_region

end time stepping block p1

termination time = 1.e-3

end time control

begin adagio region contain_region

use finite element model mesh1

begin results output wedge_output

Database Name = wedge.e

Database Type = exodusII

nodal variables = displacement as displ

element Variables = memb_stress as stress_memb

element Variables = top_stress as stress_top

element Variables = bottom_stress as stress_bot

element Variables = cm_stress

element Variables = ct_stress

element Variables = cb_stress

element Variables = element_thickness as thick

element Variables = element_area as area

element Variables = axis1_dir as axis1

element Variables = axis2_dir as axis2

end results output wedge_output

begin user output

block = block_1

transform element variable memb_stress to coordinate system sysC as cm_stress

end user output

begin user variable cm_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable cm_stress

begin user output

block = block_1

transform element variable top_stress to coordinate system sysC as ct_stress

end user output

begin user variable ct_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable ct_stress

begin user output

block = block_1

transform element variable bottom_stress to coordinate system sysC as cb_stress

end user output

begin user variable cb_stress

type = element sym_tensor length = 1

initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable cb_stress

# inside surface: pressure loading

begin pressure

surface = surface_100
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function = pressure

scale factor = -1.0

end pressure

# cyclic symmetry

begin periodic

master = nodelist_5

slave = nodelist_6

search tolerance = 1.e-6

reference axis = Axis

point on axis = PointOnAxis

theta = 0.5

end periodic

Loadstep predictor using line search type secant

Begin adagio solver cg

target relative residual = 1.0e-5

Maximum Iterations = 10000

Minimum Iterations = 0

Line Search type secant

iteration print = 1

preconditioner = probe

end adagio solver cg

end adagio region contain_region

end adagio procedure load

end sierra wedge
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