7,613 research outputs found

    Novel Coronavirus (2019-nCoV) in Disguise

    Get PDF
    Novel coronavirus (2019-nCoV) pandemic is currently one of the most influential topics as it not only impacts the field of medicine but most importantly, it affects the lives of many individuals throughout the world. We report an interesting 2019-nCoV case in a tertiary community hospital with the initial concern of acute pyelonephritis without respiratory symptoms that ultimately led to the quarantine of a number of healthcare providers. This case emphasizes the importance of radiological evidence in diagnosing 2019-nCoV in the setting of an initial atypical presentation. It also serves as an example of how healthcare providers may need to increase their suspicion for COVID-19 to ensure self-protection and prompt diagnosis in the era of an ongoing pandemic

    Societal Emotional Process, Emotional Reactivity, and Their Increasing Challenge for Ministry Leadership

    Get PDF
    The increasing anxiety and reactivity across society witnessed in elections, responses to COVID-19, and even within personal posts on social media platforms is a phenomenon that is growing invasively and pervasively present in ministry leadership. Murray Bowen’s family systems theory (1978) seminal concepts of societal emotional process and emotional reactivity describe the phenomenon with acumen. This article outlines these two concepts and provides current examples of how they are being experienced by ministry leaders. Biblical examples demonstrate that the phenomenon has always been present in ministry leadership. Practical guidance is provided for ministry leaders to address this growing challenge by means of their own self-differentiation, thus providing an accessible response and strategy to this pervasive leadership issue

    The Chameleonic Contribution to the SZ Radial Profile of the Coma Cluster

    Full text link
    We constrain the chameleonic Sunyaev--Zel'dovich (CSZ) effect in the Coma cluster from measurements of the Coma radial profile presented in the WMAP 7-year results. The CSZ effect arises from the interaction of a scalar (or pseudoscalar) particle with the cosmic microwave background in the magnetic field of galaxy clusters. We combine this radial profile data with SZ measurements towards the centre of the Coma cluster in different frequency bands, to find Delta T_{SZ,RJ}(0)=-400+/-40 microKelvin and Delta T_{CSZ}^{204 GHz}(0)=-20+/-15 microKelvin (68% CL) for the thermal SZ and CSZ effects in the cluster respectively. The central value leads to an estimate of the photon to scalar (or pseudoscalar) coupling strength of g = (5.2 - 23.8) x 10^{-10} GeV^{-1}, while the 95% confidence bound is estimated to be g < (8.7 - 39.4) x 10^{-10} GeV^{-1}.Comment: 13 pages, 3 figure

    Fixing All Moduli in a Simple F-Theory Compactification

    Get PDF
    We discuss a simple example of an F-theory compactification on a Calabi-Yau fourfold where background fluxes, together with nonperturbative effects from Euclidean D3 instantons and gauge dynamics on D7 branes, allow us to fix all closed and open string moduli. We explicitly check that the known higher order corrections to the potential, which we neglect in our leading approximation, only shift the results by a small amount. In our exploration of the model, we encounter interesting new phenomena, including examples of transitions where D7 branes absorb O3 planes, while changing topology to preserve the net D3 charge.Comment: 68 pages, 19 figures; v2: references adde

    Directional emission from asymmetric resonant cavities

    Get PDF
    Asymmetric resonant cavities (ARCs) with highly non-circular but convex cross-sections are predicted theoretically to have high-Q whispering gallery modes with very anisotropic emission. We develop a ray dynamics model for the emission pattern and present numerical and experimental confirmation of the theory.Comment: 7 pages LaTeX, 3 postscript figure

    Kappa symmetry, generalized calibrations and spinorial geometry

    Full text link
    We extend the spinorial geometry techniques developed for the solution of supergravity Killing spinor equations to the kappa symmetry condition for supersymmetric brane probe configurations in any supergravity background. In particular, we construct the linear systems associated with the kappa symmetry projector of M- and type II branes acting on any Killing spinor. As an example, we show that static supersymmetric M2-brane configurations which admit a Killing spinor representing the SU(5) orbit of Spin(10,1)Spin(10,1) are generalized almost hermitian calibrations and the embedding map is pseudo-holomorphic. We also present a bound for the Euclidean action of M- and type II branes embedded in a supersymmetric background with non-vanishing fluxes. This leads to an extension of the definition of generalized calibrations which allows for the presence of non-trivial Born-Infeld type of fields in the brane actions.Comment: 9 pages, latex, references added and minor change

    Improvement and further development of SSM/I overland parameter algorithms using the WetNet workstation

    Get PDF
    Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented
    • …
    corecore