217 research outputs found

    Interaction of Close-in Planets with the Magnetosphere of their Host Stars. II. Super-Earths as Unipolar Inductors and their Orbital Evolution

    Full text link
    Planets with several Earth masses and a few day orbital periods have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, a key evolution issue is the efficiency of their retention near their host stars. If these planets attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction would have encountered intense stellar magnetic field. Since these planets have a higher conductivity than the atmosphere of their stars, the magnetic flux tube connecting the planet and host star would slip though the envelope of the star faster than across the planet. The induced electro-motive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfven speed. The foot of the flux tube sweeps across the stellar surface and the potential drop drives a DC current analogous to that proposed for the Io-Jupiter electrodynamic interaction. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. The current heats the planet and leads to a Lorrentz torque which drives the planet's orbit to evolve toward circularization and synchronization with the star's spin. The net effect is the damping of the planet's orbital eccentricity. Around slowly (rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation in these planets and show that it can lead to severe structure evolution and potential loss of volatile material. However, these effects may be significantly weakened by the reconnection of the induced field [Slightly shortened abstract]

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    Response to 2009 Pandemic Influenza A (H1N1) Vaccine in HIV-Infected Patients and the Influence of Prior Seasonal Influenza Vaccination

    Get PDF
    Background: The immunogenicity of 2009 pandemic influenza A(H1N1) (pH1N1) vaccines and the effect of previous influenza vaccination is a matter of current interest and debate. We measured the immune response to pH1N1 vaccine in HIV-infected patients and in healthy controls. In addition we tested whether recent vaccination with seasonal trivalent inactivated vaccine (TIV) induced cross-reactive antibodies to pH1N1. (clinicaltrials.gov Identifier:NCT01066169) Methods and Findings: In this single-center prospective cohort study MF59-adjuvanted pH1N1 vaccine (Focetria®, Novartis) was administered twice to 58 adult HIV-infected patients and 44 healthy controls in November 2009 (day 0 and day 21). Antibody responses were measured at baseline, day 21 and day 56 with hemagglutination-inhibition (HI) assay. The seroprotection rate (defined as HI titers ≥1:40) for HIV-infected patients was 88% after the first and 91% after the second vaccination. These rates were comparable to those in healthy controls. Post-vaccination GMT, a sensitive marker of the immune competence of a group, was lower in HIV-infected patients. We fou

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore