2,266 research outputs found

    Stories from the Rubble: Analysis of Mortuary Artifacts from the Spring Street Presbyterian Church Vaults

    Get PDF
    Archaeological investigations of the Spring Street Presbyterian Church vaults resulted in the recovery of coffin plates, hardware and other burial-related artifacts that convey information regarding the individuals interred within these chambers. These interments also offer a glimpse at mortuary customs and practices in vault burials during the first half of the 19th century

    A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

    Get PDF
    Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing \textit{input} residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances

    TETRA Observation of Gamma Rays at Ground Level Associated with Nearby Thunderstorms

    Full text link
    Terrestrial Gamma ray Flashes (TGFs) -- very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms -- have been detected with satellite instruments. TETRA, an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma rays at ground level. After 2.6 years of observation, twenty-four events with durations 0.02- 4.2 msec have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ~1000 m. Nine of the events occurred within 6 msec and 3 miles of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site.Comment: To be published in Journal of Geophysical Research: Space Phys. 118,

    Inverse Simulation as a Tool for Fault Detection and Isolation in Planetary Rovers

    Get PDF
    With manned expeditions to planetary bodies beyond our own and the Moon currently intractable, the onus falls upon robotic systems to explore and analyse extraterrestrial environments such as Mars. These systems typically take the form of wheeled rovers, designed to navigate the difficult terrain of other worlds. Rovers have been used in this role since Lunokhod 1 landed on the Moon in 1970. While early rovers were remote controlled, communication latency with bodies beyond the Moon and the desire to improve mission effectiveness have resulted in increasing autonomy in planetary rovers. With an increase in autonomy, however, comes an increase in complexity. This can have a negative impact on the reliability of the rover system. With a fault-free system an unlikely prospect and human assistance millions of miles away, the rover must have a robust fault detection, isolation and recovery (FDIR) system. The need for comprehensive FDIR is demonstrated by the recent Chinese lunar rover, Yutu (or “Jade Rabbit”). Yutu was rendered immobile 42 days after landing and remained so for the duration of its operational life: 31 months. While its lifespan far exceeded its expected value, Yutu's inability to move severely impaired its ability to perform its mission. This clearly highlights the need for robust FDIR. A common approach to FDIR is through the generation and analysis of residuals. Output residuals may be obtained by comparing the outputs of the system with predictions of those outputs, obtained from a mathematical model of the system which is supplied with the system inputs. Output residuals allow simple detection and isolation of faults at the output of the system. Faults in earlier stages of the system, however, propagate through the system dynamics and can disperse amongst several of the outputs. This problem is exemplified by faults at the input, which can potentially excite every system state and thus manifest in every output residual. Methods exist for decoupling and analysing output residuals such that input faults may be isolated, however, these methods are complex and require comprehensive development and testing. A conceptually simpler approach is presented in this paper. Inverse simulation (InvSim) is a numerical method by which the inputs of a system are obtained for a desired output. It does so by using a Newton-Raphson algorithm to solve a non-linear model of the system for the input. When supplied with the outputs of a fault-afflicted system, InvSim produces the input required to drive a fault-free system to this output. The fault therefore manifests itself in this generated input signal. The InvSim-generated input may then be compared to the true system input to generate input residuals. Just as a fault at an output manifests itself in the residual for that output alone, a fault at an input similarly manifests itself only in the residual for that input. InvSim may also be used to generate residuals at other locations in the system, by considering distinct subsystems with their own inputs and outputs. This ability is tested comprehensively in this paper. Faults are applied to a simulated rover at a variety of locations within the system structure and residuals generated using both InvSim and conventional forward simulation. Residuals generated using InvSim are shown to facilitate detection and isolation of faults in several locations using simple analyses. By contrast, forward simulation requires the use of complex analytical methods such as structured residuals or adaptive thresholds

    Normative Influence and Rational Conflict Decisions: Group Norms and Cost-Benefit Analyses for Intergroup Behavior

    Full text link
    The present paper articulates a model in which ingroup and outgroup norms inform ‘rational’ decision-making (cost-benefit analysis) for conflict behaviors. Norms influence perceptions of the consequences of the behavior, and individuals may thus strategically conform to or violate norms in order to acquire benefits and avoid costs. Two studies demonstrate these processes in the context of conflict in Québec. In the first study, Anglophones’ perceptions of Francophone and Anglophone norms for pro-English behaviors predicted evaluations of the benefits and costs of the behaviors, and these cost-benefit evaluations in turn mediated the norm-intention links for both group norms. In the second study, a manipulated focus on supportive versus hostile ingroup and outgroup norms also predicted cost-benefit evaluations, which mediated the norm-intention relationships. The studies support a model of strategic conflict choices in which group norms inform, rather than suppress, rational expectancy-value processes. Implications for theories of decision-making and normative influence are discussed

    Before and After the Clean Water Act: How Science, Law, and Public Aspirations Drove Seven Decades of Progress in Maine Water Quality

    Get PDF
    In the 1950s, Maine established a water quality classification system creating the conceptual scaffolding of a tiered system of management. Passage of the federal Clean Water Act in 1972 drove dramatic advances in science, technology, and policy leading to systematic improvement for the next five decades. Today’s tiered classification system provides a range of management goals from natural to various allowable uses. The state assigns uses and standards for each classification, incorporating physical, chemical, and biological indicators. This system has brought steady improvement in water quality, ecological condition, and overall value for human use. Visible evidence of improvement and adoption of these management alternatives have inspired a re-imagining of how Maine’s waters can benefit clean water-based businesses, recreation, and amenity development

    Field-to-farm gate greenhouse gas emissions from corn stover production in the Midwestern U.S.

    Get PDF
    Measured field data were used to compare two allocation methods on life cycle greenhouse gas emissions from corn (Zea mays L.) stover production in the Midwest U.S. We used publicly-available crop yield, nitrogen fertilizer, and direct soil nitrous oxide emissions data from the USDA-ARS Resilient Economic Agricultural Practices research program. Field data were aggregated from 9 locations across 26 site-years for 3 stover harvest rates (no removal; moderate removal e 3.1Mg ha-1; high removal e 7.2Mg ha-1) and 2 tillage practices (conventional; reduced/no-till). Net carbon uptake by crops was computed from measured plant carbon content. Monte Carlo simulations sampled input distributions to assess variability in farm-to-gate GHG emissions. The base analysis assumed no change in soil organic carbon stocks. In all cases, net CO2 uptake during crop growth and soil-respired CO2 dominated system emissions. Emissions were most sensitive to co-product accounting method, with system expansion emissions ~15% lower than mass allocation. Regardless of accounting method, lowest emissions occurred for a moderate removal rate under reduced/no-till management. The absence of correlations between N fertilization rate and stover removal rate or soil N2O emissions in this study challenges the use of such assumptions typically employed in life cycle assessments Storage of all carbon retained on the field as SOC could reduce emissions by an additional 15%. Our results highlight how variability in GHG emissions due to location and weather can overshadow the impact of farm management practices on field-to-farm gate emissions

    Effectiveness and cost-effectiveness of a universal parenting skills programme in deprived communities : multicentre randomised controlled trial

    Get PDF
    Objective: To evaluate the effectiveness and cost utility of a universally provided early years parenting programme. Design: Multicentre randomised controlled trial with cost-effectiveness analysis. Setting: Early years centres in four deprived areas of South Wales. Participants: Families with children aged between 2 and 4 years. 286 families were recruited and randomly allocated to the intervention or waiting list control. Intervention: The Family Links Nurturing Programme (FLNP), a 10-week course with weekly 2 h facilitated group sessions. Main outcome measures: Negative and supportive parenting, child and parental well-being and costs assessed before the intervention, following the course (3 months) and at 9 months using standardised measures. Results: There were no significant differences in primary or secondary outcomes between trial arms at 3 or 9 months. With ‘+’ indicating improvement, difference in change in negative parenting score at 9 months was +0.90 (95%CI −1.90 to 3.69); in supportive parenting, +0.17 (95%CI −0.61 to 0.94); and 12 of the 17 secondary outcomes showed a non-significant positive effect in the FLNP arm. Based on changes in parental well-being (SF-12), the cost per quality-adjusted life year (QALY) gained was estimated to be £34 913 (range 21 485–46 578) over 5 years and £18 954 (range 11 664–25 287) over 10 years. Probability of cost per QALY gained below £30 000 was 47% at 5 years and 57% at 10 years. Attendance was low: 34% of intervention families attended no sessions (n=48); only 47% completed the course (n=68). Also, 19% of control families attended a parenting programme before 9-month follow-up. Conclusions: Our trial has not found evidence of clinical or cost utility for the FLNP in a universal setting. However, low levels of exposure and contamination mean that uncertainty remains. Trial registration: The trial is registered with Current Controlled Trials ISRCTN13919732
    corecore