6,400 research outputs found
STATUS OF COMMUNICATION AND TRACKING TECHNOLOGIES IN UNDERGROUND COAL MINES
In 2006, Congress passed the MINER Act requiring mine operators to submit an emergency response plan that included post-accident communications and tracking systems to MSHA within three years of the Act. These systems were required to be designed for maximum survivability after a catastrophic event, such as a fire or explosion, and to be permissible (meets MSHA criteria for explosion-proof). At that time, no commercially available systems existed that met these standards. Several companies undertook developing new, or enhancing existing, technologies to meet these requirements. This research presents the results of a study that was conducted to determine the present day types of systems being used, along with their average annual worker hours, coal production, number of mechanized mining units, and type of communications and tracking systems installed. Furthermore, 10 mines were visited to obtain detailed information related to the various technologies. It was found the most influential parameters on system selection include MSHA district, mining method, and number of underground workers
The water budget of a hurricane as dependent on its movement
Despite the dangers associated with tropical cyclones and their rainfall, the
origins of storm moisture remains unclear. Existing studies have focused on the
region 40-400 km from the cyclone center. It is known that the rainfall within
this area cannot be explained by local processes alone but requires imported
moisture. Nonetheless, the dynamics of this imported moisture appears unknown.
Here, considering a region up to three thousand kilometers from storm center,
we analyze precipitation, atmospheric moisture and movement velocities for
North Atlantic hurricanes. Our findings indicate that even over such large
areas a hurricane's rainfall cannot be accounted for by concurrent evaporation.
We propose instead that a hurricane consumes pre-existing atmospheric water
vapor as it moves. The propagation velocity of the cyclone, i.e. the difference
between its movement velocity and the mean velocity of the surrounding air
(steering flow), determines the water vapor budget. Water vapor available to
the hurricane through its movement makes the hurricane self-sufficient at about
700 km from the hurricane center obviating the need to concentrate moisture
from greater distances. Such hurricanes leave a dry wake, whereby rainfall is
suppressed by up to 40 per cent compared to its long-term mean. The inner
radius of this dry footprint approximately coincides with the radius of
hurricane self-sufficiency with respect to water vapor. We discuss how Carnot
efficiency considerations do not constrain the power of such open systems that
deplete the pre-existing moisture. Our findings emphasize the incompletely
understood role and importance of atmospheric moisture supplies, condensation
and precipitation in hurricane dynamics.Comment: 38 pages, 17 figures, 1 Table; extended analyses: available E/P
ratios reviewed and explained (Table 1); rainfall and moisture distributions
3 days before and after hurricanes, propagation velocity and its relationship
to radial velocity; efficiency for non-steady hurricanes; hurricane motion
and rainfall asymmetries discusse
Dither Gyro Scale Factor Calibration: GOES-16 Flight Experience
This poster is a sequel to a paper presented at the 34th Annual AAS Guidance and Control Conference in 2011, which first introduced dither-based calibration of gyro scale factors. The dither approach uses very small excitations, avoiding the need to take instruments offline during gyro scale factor calibration. In 2017, the dither calibration technique was successfully used to estimate gyro scale factors on the GOES-16 satellite. On-orbit dither calibration results were compared to more traditional methods using large angle spacecraft slews about each gyro axis, requiring interruption of science. The results demonstrate that the dither technique can estimate gyro scale factors to better than 2000 ppm during normal science observations
Use of a parallel bioreactor scaledown system for optimisation of a perfusion-based upstream process for adenovirus production
The recent pandemic emphasises the need for vaccine producers to be able to respond rapidly to the need for large quantities for global distribution. Here, we report work to optimise a perfusion-based upstream approach. Perfusion can enhance volumetric productivity of adenoviral vectors, but the complexity of perfusion culture and the lack of suitable scale-down models has hindered work to establish the complex relationships between variables affecting the process.
Please click Download on the upper right corner to see the full abstract
Clinical Outcomes After Four-Level Anterior Cervical Discectomy and Fusion.
Study Design: Retrospective cohort study.
Objectives: Anterior cervical discectomy and fusion (ACDF) demonstrates reliable improvement in neurologic symptoms associated with anterior compression of the cervical spine. There is a paucity of data on outcomes following 4-level ACDFs. The purpose of this study was to evaluate clinical outcomes for patients undergoing 4-level ACDF.
Methods: All 4-level ACDFs with at least 1-year clinical follow-up were identified. Clinical outcomes, including fusion rates, neurologic outcomes, and reoperation rates were determined.
Results: Retrospective review of our institutional database revealed 25 patients who underwent 4-level ACDF with at least 1-year clinical follow-up. Average age was 57.5 years (range 38.2-75.0 years); 14 (56%) were male, and average body mass index was 30.2 kg/m
Conclusions: Review of our institution\u27s experience demonstrated a low rate of revision cervical surgery for any reason of 8% at mean 19 months follow-up, and neurological examinations consistently improved, despite a high rate of radiographic nonunion (31%)
Scattering of Noncommutative Solitons in 2+1 Dimensions
Interactions of noncommutative solitons in a modified U(n) sigma model in 2+1
dimensions can be analyzed exactly. Using an extension of the dressing method,
we construct explicit time-dependent solutions of its noncommutative field
equation by iteratively solving linear equations. The approach is illustrated
by presenting bound states and right-angle scattering configurations for two
noncommutative solitons.Comment: 1+10 pages; v2: 2 typos fixed, refs updated; v3: typos (signs,
coefficients) correcte
Effect Of Shock Tunnel Geometry On Shockwave And Vortex Ring Formation, Propagation, And Head On Collision
Vortex ring research primarily focuses on the formation from circular openings. Consequently, the role of tunnel geometry is less understood, despite there being numerous research studies using noncircular shock tunnels. This experimental study investigated shockwaves and vortex rings from different geometry shock tunnels from formation at the tunnel opening to head on collision with another similarly formed vortex ring using schlieren imaging and statistical analysis. The velocity of the incident shockwave was found to be consistent across all four shock tunnel geometries, which include circle, hexagon, square, and triangle of the same cross-sectional area. The velocity was 1.2 ± 0.007 Mach and was independent of the tunnel geometry. However, the velocities of the resulting vortex rings differed between the shapes, with statistical analysis indicating significant differences between the triangle and hexagon vortex velocities compared to the circle. Vortex rings from the square and circle shock tunnels were found to have statistically similar velocities. All vortex rings slowed as they traveled due to corner inversion and air drag. All shock tunnels with corners produce a wobble in the vortex rings. Vortex rings interact with opposing incident shockwaves prior to colliding with each other. Vortex velocity before and after shock-vortex interaction was measured and evaluated, showing statistically similar results. Shock-vortex interaction slows the shockwave upon interaction, while the shock-shock interaction resulted in no change in shock velocity. Although the vortex rings travel at different velocities, all head-on vortex ring collisions produce a perpendicular shockwave that travels at 1.04 ± 0.005 Mach
Recommended from our members
Retrievals of thick cloud optical depth from the Geoscience Laser Altimeter System (GLAS) by calibration of solar background signal
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases
- …