Despite the dangers associated with tropical cyclones and their rainfall, the
origins of storm moisture remains unclear. Existing studies have focused on the
region 40-400 km from the cyclone center. It is known that the rainfall within
this area cannot be explained by local processes alone but requires imported
moisture. Nonetheless, the dynamics of this imported moisture appears unknown.
Here, considering a region up to three thousand kilometers from storm center,
we analyze precipitation, atmospheric moisture and movement velocities for
North Atlantic hurricanes. Our findings indicate that even over such large
areas a hurricane's rainfall cannot be accounted for by concurrent evaporation.
We propose instead that a hurricane consumes pre-existing atmospheric water
vapor as it moves. The propagation velocity of the cyclone, i.e. the difference
between its movement velocity and the mean velocity of the surrounding air
(steering flow), determines the water vapor budget. Water vapor available to
the hurricane through its movement makes the hurricane self-sufficient at about
700 km from the hurricane center obviating the need to concentrate moisture
from greater distances. Such hurricanes leave a dry wake, whereby rainfall is
suppressed by up to 40 per cent compared to its long-term mean. The inner
radius of this dry footprint approximately coincides with the radius of
hurricane self-sufficiency with respect to water vapor. We discuss how Carnot
efficiency considerations do not constrain the power of such open systems that
deplete the pre-existing moisture. Our findings emphasize the incompletely
understood role and importance of atmospheric moisture supplies, condensation
and precipitation in hurricane dynamics.Comment: 38 pages, 17 figures, 1 Table; extended analyses: available E/P
ratios reviewed and explained (Table 1); rainfall and moisture distributions
3 days before and after hurricanes, propagation velocity and its relationship
to radial velocity; efficiency for non-steady hurricanes; hurricane motion
and rainfall asymmetries discusse