238 research outputs found

    Lower Crustal Earthquakes in the March 2018 Sequence Along the Western Margin of Afar

    Get PDF
    During the evolution of continental rift systems, extension is thought to progressively focus in-rift to the future breakup boundary while faults along the rift margins progressively deactivate. However, observational constraints on how strain is partitioned between rift axis and rift margins are still lacking. The Afar rift records the latest stages of rifting and incipient continental breakup. Here, we analyzed the recent MW 5.2 earthquake on the Western Afar Margin on March 24, 2018 and the associated seismic sequence of >500 earthquakes using 24 temporary seismic stations deployed during 2017–2018. We show seismicity occurring at lower crustal depths, from ∌15 to ∌30 km, with focal mechanisms and relocated earthquakes highlighting both west-dipping and east-dipping normal faults. We tested earthquake depth using InSAR by processing six independent interferograms using Sentinel-1 data acquired from both ascending and descending tracks. None of them shows evidence of surface deformation. We tested possible ranges of depth by producing forward models for a fault located at progressively increasing depths. Models show that surface deformation is not significant for fault slip at depths greater than 15 km, in agreement with the hypocentral depth of 19 km derived from seismic data for the largest earthquake. Due to the localized nature of deep earthquakes near hot springs coupled with subsurface evidence for magmatism, we favor an interpretation of seismicity induced by migrating fluids such as magma or CO2. We suggest that deep fluid migration can occur at the rifted-margin influencing seismicity during incipient continental rupture

    Lower Crustal Earthquakes in the March 2018 Sequence Along the Western Margin of Afar

    Get PDF
    During the evolution of continental rift systems, extension is thought to progressively focus in-rift to the future breakup boundary while faults along the rift margins progressively deactivate. However, observational constraints on how strain is partitioned between rift axis and rift margins are still lacking. The Afar rift records the latest stages of rifting and incipient continental breakup. Here, we analyzed the recent M W 5.2 earthquake on the Western Afar Margin on March 24, 2018 and the associated seismic sequence of &gt;500 earthquakes using 24 temporary seismic stations deployed during 2017–2018. We show seismicity occurring at lower crustal depths, from ∌15 to ∌30 km, with focal mechanisms and relocated earthquakes highlighting both west-dipping and east-dipping normal faults. We tested earthquake depth using InSAR by processing six independent interferograms using Sentinel-1 data acquired from both ascending and descending tracks. None of them shows evidence of surface deformation. We tested possible ranges of depth by producing forward models for a fault located at progressively increasing depths. Models show that surface deformation is not significant for fault slip at depths greater than 15 km, in agreement with the hypocentral depth of 19 km derived from seismic data for the largest earthquake. Due to the localized nature of deep earthquakes near hot springs coupled with subsurface evidence for magmatism, we favor an interpretation of seismicity induced by migrating fluids such as magma or CO 2. We suggest that deep fluid migration can occur at the rifted-margin influencing seismicity during incipient continental rupture. </p

    DISTRIBUTIONS ISOTOPIQUES DES PRODUITS DE TRANSFERTS TRÈS INÉLASTIQUES ENTRE IONS LOURDS

    No full text
    On compare les distributions isotopiques expérimentales des produits de transfert trÚs inélastiques obtenus par les réactions 40Ca (284 MeV) + 40Ca et 40Ar (295 MeV) + 232Th

    Plate-Boundary Kinematics of the Afrera Linkage Zone (Afar) From InSAR and Seismicity

    Get PDF
    International audienceStudying the mechanisms of interaction between rift segments is key to understanding the kinematics of plate boundaries in continental rifts. However, the spatial and temporal evolution of deformation at rift linkage zones is rarely observed directly. Here, we combine InSAR data spanning 2005–2010 and 2014–2019 from ENVISAT and Sentinel-1 satellites, respectively, with local seismicity from the Afar rift to investigate the plate-boundary kinematics of the Afrera linkage zone, the junction between the Erta Ale and Tat Ali magmatic segments in Northern Afar (Ethiopia). We obtain time-series of cumulative InSAR Line-Of-Sight (LOS) displacements that show deformation is accommodated by a series of active en-echelon faults striking ∌NS and characterized by normal slip associated with a left-lateral strike-slip component. Additionally, we observe spatial variation in fault behavior with stick-slip and creep. The faults in the center of the linkage zone behave primarily in a stick-slip mode (with abrupt fault displacements up to ∌40 mm) and fault motions are associated with earthquakes of ML > 5. Conversely, faults at the edge of the linkage zone, near the magmatic segments, show creep and some stick-slip behavior (with cumulative LOS displacement up to ∌30–40 mm over a ∌5-year period) accompanied by low-level seismicity. Some of the creeping faults are also spatially associated with hydrothermal springs. We interpret that the temporal behavior of the faults in the linkage zone is controlled by the interplay between tectonic extension, high heat flows, and fluid circulation near the magmatic segments where creeping of some faults is favored

    Precision mass measurements of very short-lived, neutron-rich Na isotopes using a radiofrequency spectrometer

    Get PDF
    Mass measurements of high precision have been performed on sodium isotopes out to 30^{30}Na using a new technique of radiofrequency excitation of ion trajectories in a homogeneous magnetic field. This method, especially suited to very short-lived nuclides, has allowed us to significantly reduce the uncertainty in mass of the most exotic Na isotopes: a relative error of 5x10−7^{-7} was achieved for 28^{28}Na having a half-life of only 30.5 ms and 9x10−7^{-7} for the weakly produced 30^{30}Na. Verifying and minimizing binding energy uncertainties in this region of the nuclear chart is important for clarification of a long standing problem concerning the strength of the NN=20 magic shell closure. These results are the fruit of the commissioning of the new experimental program Mistral

    Accurate mass measurements of short-lived isotopes with the MISTRAL rf spectrometer

    Get PDF
    The MISTRAL experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms

    Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements

    Get PDF
    Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10–13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-Ă©chelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments
    • 

    corecore