34 research outputs found

    Crack growth prediction of mixer shaft

    Get PDF

    A novel method for the absolute fluorescence yield measurement by AIRFLY

    Get PDF
    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid, Spain, 16 - 20 September 200

    Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY

    Get PDF
    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20%) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid, Spain, 16 - 20 September 2007, to appear in Nuclear Instruments and Methods

    The TOTEM Experiment at the CERN Large Hadron Collider

    Get PDF
    The TOTEM Experiment will measure the total pp cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region 3,1 <h< 6,5, and Roman Pot stations will be placed at distances of 147m and 220m from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance

    Fire ladder test simulation

    Get PDF
    project BVIII/1-VS VI2016202002

    Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer.

    No full text
    Tumor budding is a histopathological biomarker associated with metastases and adverse survival outcomes in colorectal carcinoma (CRC) patients. It is characterized by the presence of single tumor cells or small clusters of cells within the tumor or at the tumor-invasion front. In order to obtain a tumor budding score for a patient, the region with the highest tumor bud density must first be visually identified by a pathologist, after which buds will be counted in the chosen hotspot field. The automation of this process will expectedly increase efficiency and reproducibility. Here, we present a deep learning convolutional neural network model that automates the above procedure. For model training, we used a semi-supervised learning method, to maximize the detection performance despite the limited amount of labeled training data. The model was tested on an independent dataset in which human- and machine-selected hotspots were mapped in relation to each other and manual and machine detected tumor bud numbers in the manually selected fields were compared. We report the results of the proposed method in comparison with visual assessment by pathologists. We show that the automated tumor bud count achieves a prognostic value comparable with visual estimation, while based on an objective and reproducible quantification. We also explore novel metrics to quantify buds such as density and dispersion and report their prognostic value. We have made the model available for research use on the grand-challenge platform

    Experimental and numerical analyses of the magnetic field spatial measurement inside an electromagnetic pump channel duct

    No full text
    International audienceIn the framework of the French Alternative Energies and Atomic Energy Commission (AEC) R&D program developing theAdvanced Sodium Technological Reactor for Industrial Demonstration (ASTRID), it has been proposed to use in secondarycooling circuit an electromagnetic induction pump (EMP) due to its superior safety features such as: no moving parts inliquid metal and absolutely hermetic construction. However, detailed studies should be carried out in order to masteroperation of EMP and prevent undesirable phenomenon called MHD instability, which influence both the pump efficiencyand operation

    Measurement of the pressure dependence of air fluorescence emission induced by electrons

    Get PDF
    Contains fulltext : 34503.pdf (preprint version ) (Open Access)The fluorescence detection of ultra high energy (≳1e18 eV) cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules, which are excited by the cosmic ray shower particles along their path in the atmosphere. We have made a precise measurement of the fluorescence light spectrum excited by MeV electrons in dry air. We measured the relative intensities of 34 fluorescence bands in the wavelength range from 284 to 429 nm with a high resolution spectrograph. The pressure dependence of the fluorescence spectrum was also measured from a few hPa up to atmospheric pressure. Relative intensities and collisional quenching reference pressures for bands due to transitions from a common upper level were found in agreement with theoretical expectations. The presence of argon in air was found to have a negligible effect on the fluorescence yield. We estimated that the systematic uncertainty on the cosmic ray shower energy due to the pressure dependence of the fluorescence spectrum is reduced to a level of 1% by the AIRFLY results presented in this paper
    corecore