25 research outputs found

    FedSoup: Improving Generalization and Personalization in Federated Learning via Selective Model Interpolation

    Full text link
    Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers such as hospitals and clinical research laboratories. However, recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts. Specifically, personalized FL methods have a tendency to overfit to local data, leading to a sharp valley in the local model and inhibiting its ability to generalize to out-of-distribution data. In this paper, we propose a novel federated model soup method (i.e., selective interpolation of model parameters) to optimize the trade-off between local and global performance. Specifically, during the federated training phase, each client maintains its own global model pool by monitoring the performance of the interpolated model between the local and global models. This allows us to alleviate overfitting and seek flat minima, which can significantly improve the model's generalization performance. We evaluate our method on retinal and pathological image classification tasks, and our proposed method achieves significant improvements for out-of-distribution generalization. Our code is available at https://github.com/ubc-tea/FedSoup.Comment: Accepted by MICCAI202

    Cost-effectiveness analysis of nivolumab combination therapy in the first-line treatment for advanced esophageal squamous-cell carcinoma

    Get PDF
    ObjectiveWe aimed to investigate the cost-effectiveness of nivolumab plus chemotherapy and nivolumab plus ipilimumab versus chemotherapy in the first-line treatment for advanced esophageal squamous-cell carcinoma (ESCC) patients from a healthcare system perspective in China.MethodsOn the basis of the CheckMate 648 trial, a partitioned survival model was constructed to estimate economic costs and health outcomes among overall and PD-L1-positive advanced ESCC patients over a 10-year lifetime horizon. The health-related costs and utilities were obtained from the local charges and published literature. The lifetime costs, life-years, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER) were measured. One-way and probabilistic sensitivity analyses (PSA) were performed to assess the robustness of the model.ResultsIn the base-case analysis, in overall and PD-L1-positive advanced ESCC patients, the ICERs were 415,163.81/QALYand415,163.81/QALY and 216,628.00/QALY for nivolumab plus chemotherapy, and430,704.11/QALYand430,704.11/QALY and 185,483.94/QALY for nivolumab plus ipilimumab, respectively, compared with chemotherapy. One-way sensitivity analyses revealed that patients’ weight was the most influential parameter on ICER. The PSA demonstrated that the probability of nivolumab combination therapy being cost-effective was 0% over chemotherapy at the current price and willingness-to-pay threshold ($38,351.20/QALY). When the price of nivolumab and ipilimumab decreased 80%, the cost-effective probability of nivolumab plus ipilimumab increased to 40.44% and 86.38% in overall and PD-L1-positive advanced ESCC patients, respectively.ConclusionNivolumab combination therapy could improve survival time and health benefits over chemotherapy for advanced ESCC patients, but it is unlikely to be a cost-effective treatment option in China

    High-Power and Large-Energy Dissipative Soliton Resonance in a Compact Tm-Doped All-Fiber Laser

    No full text

    A Water Monitoring System for Proton Exchange Membrane Fuel Cells Based on Ultrasonic Lamb Waves : An Ex-Situ Proof of Concept

    No full text
    Up to date, the efficiencies of proton exchange membrane fuel cells (PEMFCs) are limited by the water flooding issue. Water monitoring systems, which are a crucial step to overcoming these flooding-related problems, are mostly either invasive or compromise on the temporal resolution and field of view. Thus, we propose an ultrasonic-Lamb-waves-based, real-time, and nondestructive water monitoring system. Briefly, ultrasonic transducers are mounted on the back side of bipolar plates (BPPs) exciting Lamb waves along flow channels incorporated in BPPs. Echo signals from water droplets in the channels are also received by the transducers. Thus, with the knowledge of Lamb wave propagation velocity, water droplets are spatially resolved by the time of flight of each droplet echo. Meanwhile, the energy of each droplet-induced echo wave packet is used to quantify the local flooding status. We have implemented a flexible and generic system adaptable to various flow field designs. The working principle was demonstrated for ex situ conditions with a BPP with a 25-cm2 active area. A water sensitivity of at least 50 nL was realized, allowing for studying droplet and slug flows in PEMFCs. A 1.3-mm spatial resolution and a 2-kHz temporal resolution were simultaneously achieved. The high-performance water monitoring opens new horizons to study dynamic water evolution in channels of PEMFCs using cost-effective instrumentation, which may pave the way toward more efficient high-power PEMFCs with increased lifetimes

    Kui Jie Tong Ameliorates Ulcerative Colitis by Regulating Gut Microbiota and NLRP3/Caspase-1 Classical Pyroptosis Signaling Pathway

    No full text
    Ulcerative colitis (UC) is one of the most refractory digestive diseases in the world. Kui jie tong (KJT) is an effective traditional Chinese medicine used clinically to treat UC. This study observed the regulatory effects of KJT on NIMA-related kinase 7- (NEK7-) activated nod-like receptor protein-3 (NLRP3)/caspase-1 classical pyroptosis pathway and intestinal flora in UC model rats. KJT components were analyzed using an ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). A UC Sprague Dawley (SD) rat model was established using sodium dextran sulfate (DSS). Rats were randomly divided into four groups: control group (CG), UC model group (UG), KJT group (KG), and sulfasalazine (SASP) group (SG). After seven days of intervention, each group’s body weight, disease activity index (DAI) scores, and colon length were recorded. Intestinal mucosal injury to each group was observed using hematoxylin-eosin staining. Additionally, we investigated the expression levels of NEK7, NLRP3, ASC, caspase-1, and GSDMD in intestinal mucosa, as well as serum interleukin- (IL-) 1β, IL-18, and IL-33 proinflammatory factors. Intestinal microflora was analyzed using 16s rRNA sequencing. KJT controlled weight loss; decreased DAI scores; restored colon length; improved pathological injury in the colon; inhibited NEK7, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, and GSDMD-N expression; and decreased IL-1β, IL-18, and IL-33 contents in UG rats’ serum and colon tissue (P <0.001 or P <0.05). KJT also increased Ruminococcaceae, unclassified_f_Ruminococcaceae, and unclassified_g_Ruminococcus_1 levels and decreased Erysipelotrichia, Erysipelotrichales, Erysipelotrichaceae, Turicibacter, and uncultured_bacterium_g_Turicibacter levels. KJT alleviated UC immune-inflammatory responses to NLRP3/caspase-1 by inhibiting the NEK-7-activated classic pyroptosis pathway and improving intestinal microflora

    Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation

    No full text
    Summarization: The production of synthetic natural gas (SNG) from syngas derived through waste gasification is an attractive option for converting waste into useful fuel. However, the carbon conversion ratio of traditional SNG production is usually below 50% due to the limited amount of H2, while the excess CO2 needs to be removed. To realize a higher utilization of carbon, a novel SNG production system combining a municipal solid waste (MSW) gasifier, a solid oxide electrolyzer cell (SOEC) and a methanation unit is proposed and analyzed by thermodynamic modeling using ASPEN Plus®. Comparison is made with a similar system without the SOEC unit. The SOEC unit is used to electrolyze water into H2 required for higher CH4 production, thus eliminating the need of CO2 removal. Theoretical calculations show that the integration between SOEC with the gasifier produces H2-rich (greater than18 vol% H2) SNG without CO or CO2, allowing direct use of existing town-gas pipelines for easy transportation. With an equivalence air ratio of 0.3 for the gasification process, the carbon conversion ratio can achieve 98% with an efficiency of 67% when the ratio of H2O supplied to the SOEC unit to the carbon in the MSW reaches 2.75. In comparison, the system without SOEC unit can only achieve a carbon conversion ratio of 44% with an efficiency of 78%. Parameter selection of the proposed system in practical implementation is discussed considering the trade-off between the carbon conversion ratio and the efficiency. At the end, preliminary economic analysis also shows that the proposed system is financially attractive.Παρουσιάστηκε στο: Energy Conversion and Managemen
    corecore