88 research outputs found
An assembly gap control method based on posture alignment of wing panels in aircraft assembly
The gaps between two mating surfaces should be strictly controlled in precision manufacturing. Oversizing of gaps will decrease the dimensional accuracy and may reduce the fatigue life of a mechanical product. In order to reduce the gaps and keep them within tolerance, the relative posture (orientation and position) of two components should be optimized in the assembly process. This paper presents an optimal posture evaluation model to control the assembly gaps in aircraft wing assembly.Based on the step alignment strategy, i.e. preliminary alignment and refined alignment, the concept of a small posture transformation (SPT) is introduced. In the preliminary alignment, an initial posture is estimated by a set of auxiliary locating points (ALPs), with which the components can be quickly aligned near each other. In the refined alignment, the assembly gaps are calculated and the formulation of the gaps with component posture is derived by the SPT. A comprehensive weighted minimization model with gap tolerance constraints is established for redistributing the gaps in multi-regions. Powell-Hestenes-Rockafellar (PHR) optimization, Singular Value Decomposition (SVD) and KD-tree searching are introduced for the solution of the optimal posture for localization. Using the SPT, the trigonometric posture transformation is linearized, which benefits the iterative solution process. Through the constrained model, overall gaps are minimized and excess gaps are controlled within tolerance. Practical implications – This method has been tested with simulated model data and real product data, the results of which have shown efficient coordination of mating components.This paper proposed an optimal posture evaluation method for minimizing the gaps between mating surfaces through component adjustments. This will promote the assembly automation and variation control in aircraft wing assembly
COVID-19 causes record decline in global CO2 emissions
The considerable cessation of human activities during the COVID-19 pandemic
has affected global energy use and CO2 emissions. Here we show the
unprecedented decrease in global fossil CO2 emissions from January to April
2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when
compared with the period last year. In addition other emerging estimates of
COVID impacts based on monthly energy supply or estimated parameters, this
study contributes to another step that constructed the near-real-time daily CO2
emission inventories based on activity from power generation (for 29
countries), industry (for 73 countries), road transportation (for 406 cities),
aviation and maritime transportation and commercial and residential sectors
emissions (for 206 countries). The estimates distinguished the decline of CO2
due to COVID-19 from the daily, weekly and seasonal variations as well as the
holiday events. The COVID-related decreases in CO2 emissions in road
transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to
2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%),
residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2,
-15%). Regionally, decreases in China were the largest and earliest (234.5 Mt
CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S.
(162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional
nitrogen oxides concentrations observed by satellites and ground-based
networks, but the calculated signal of emissions decreases (about 1Gt CO2) will
have little impacts (less than 0.13ppm by April 30, 2020) on the overserved
global CO2 concertation. However, with observed fast CO2 recovery in China and
partial re-opening globally, our findings suggest the longer-term effects on
CO2 emissions are unknown and should be carefully monitored using multiple
measures
Near-real-time monitoring of global COâ‚‚ emissions reveals the effects of the COVID-19 pandemic
The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO₂) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO₂ emissions (−1551 Mt CO₂) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially
Recommended from our members
Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
Phylogenetic analysis of the endoribonuclease Dicer family
Dicers are proteins of the ribonuclease III family with the ability to process dsRNA, involved in regulation of gene expression at the post-transcriptional level. Dicers are conserved from basal metazoans to higher metazoans and contain a number of functional domains that interact with dsRNA. The completed genome sequences of over 34 invertebrate species allowed us to systematically investigate Dicer genes over a diverse range of phyla. The majority of invertebrate Dicers clearly fell into the Dicer1 or Dicer2 subfamilies. Most nematodes possessed only one Dicer gene, a member of the Dicer1 subfamily, whereas two Dicer genes (Dicer1 and Dicer2) were present in all platyhelminths surveyed. Analysis of the key domains showed that a 5' pocket was conserved across members of the Dicer1 subfamily, with the exception of the nematode Bursaphelenchus xylophilus. Interestingly, Nematostella vectensis DicerB grouped into Dicer2 subfamily harbored a 5' pocket, which is commonly present in Dicer1. Similarly, the 3' pocket was also found to be conserved in all Dicer proteins with the exceptions of Schmidtea mediterranea Dicer2 and Trichoplax adherens Dicer A. The loss of catalytic residues in the RNase III domain was noted in platyhelminths and cnidarians, and the 'ball' and 'socket' junction between two RNase III domains in platyhelminth Dicers was different from the canonical junction, suggesting the possibility of different conformations. The present data suggest that Dicers might have duplicated and diversified independently, and have evolved for various functions in invertebrates
Frost-Preventing Design for Space Station Refrigerator
Different preservation temperatures for sample storage in space stations and corresponding refrigerator devices have been designed. In the below-freezing environment, frost will occur on the inner wall surface and the sealing place of the refrigerator device, which may have an impact on the operating performance and sealing performance of the refrigerator device. This paper analyzes the impact of frost on refrigerator storage devices, and designs and verifies a scheme of air cooling with a hollow seal method to reduce the impact of frost. The designed refrigerator was tested for air cooling, sealing, and long-term performance. The tests show that the air-cooling structure designed in this paper can effectively reduce the frost on the sample surface. A cumulative helium mass spectrometry leak detection method is applied to verify that the hollow seal structure designed has a better sealing property, which can prevent the diffusion of water vapor and frosting at the sealing position. The design with air cooling and hollow sealing has less frost and more stable performance for long-term operation. The results demonstrate this refrigerator would have the capability of operating on-orbit. The frost-preventing method for space station refrigerator designed in this paper has significance for the design of similar cryogenic equipment in microgravity environments
- …