2,025 research outputs found
Apollo spacecraft systems analysis program. Range coverage for the CSM rendezous radar transponder. Antenna raised 4 in. and tilted forward 15 deg
Range coverage diagrams for CSM rendezvous radar transponder antenna raised 4 in. and tilted forward 15 de
Apollo Spacecraft Systems Analysis Program. Analysis of Rendezvous Radar Pearl Flight Test Data
Flight test data analysis for rendezvous radar performance during simulated lunar missio
Authoritarianism and Attitudes Toward Contemporary Social Issues in the 1990s
Three studies were conducted to examine the relevance of authoritarianism to contemporary social attitudes, with special emphasis on AIDS, drug use, and the environment. In Studies 1 and 2, students scoring higher on authoritarianism (measured by Byrne\u27s balanced F scale and Altemeyer\u27s Right-Wing Authoritarianism Scale, respectively) were more likely to endorse harsh, punitive sentiments and solutions to the problems of AIDS and drugs and less likely to endorse more egalitarian ones. These two issues are presumed to represent a threat to the American way of life and provide clear out-groups for authoritarian aggression. Regarding the environment, authoritarians express hostility toward the environmental movement, rather than toward polluters. In Study 3, authoritarianism was further related to attitudes on abortion, child abuse, homelessness, the space program, the trade deficit, political changes in the Soviet Union, and the purposes of colleges and universities. These results show that the concept of authoritarianism is applicable to attitudes on many important issues of the 1990s
Systems with Multiplicative Noise: Critical Behavior from KPZ Equation and Numerics
We show that certain critical exponents of systems with multiplicative noise
can be obtained from exponents of the KPZ equation. Numerical simulations in 1d
confirm this prediction, and yield other exponents of the multiplicative noise
problem. The numerics also verify an earlier prediction of the divergence of
the susceptibility over an entire range of control parameter values, and show
that the exponent governing the divergence in this range varies continuously
with control parameter.Comment: Four pages (In Revtex format) with 4 figures (in Postcript
In flight performance and first results of FREGATE
The gamma-ray detector of HETE-2, called FREGATE, has been designed to detect
gamma-ray bursts in the energy range [6-400] keV. Its main task is to alert the
other instruments of the occurrence of a gamma-ray burst (GRB) and to provide
the spectral coverage of the GRB prompt emission in hard X-rays and soft
gamma-rays. FREGATE was switched on on October 16, 2000, one week after the
successful launch of HETE-2, and has been continuously working since then. We
describe here the main characteristics of the instrument, its in-flight
performance and we briefly discuss the first GRB observations.Comment: Invited lecture at the Woods Hole 2001 GRB Conference, 8 pages, 15
figure
Experiment K-6-03. Gravity and skeletal growth, part 1. Part 2: Morphology and histochemistry of bone cells and vasculature of the tibia; Part 3: Nuclear volume analysis of osteoblast histogenesis in periodontal ligament cells; Part 4: Intervertebral disc swelling pressure associated with microgravity
Bone area, bone electrophysiology, bone vascularity, osteoblast morphology, and osteoblast histogenesis were studied in rats associated with Cosmos 1887. The results suggest that the synchronous animals were the only group with a significantly larger bone area than the basal group, that the bone electrical potential was more negative in flight than in the synchronous rats, that the endosteal osteoblasts from flight rats had greater numbers of transitional Golgi vesicles but no difference in the large Golgi saccules or the alkaline phosphatase activity, that the perioteal vasculature in the shaft of flight rats often showed very dense intraluminal deposits with adjacent degenerating osteocytes as well as lipid accumulations within the lumen of the vessels and sometimes degeneration of the vascular wall (this change was not present in the metaphyseal region of flight animals), and that the progenitor cells decreased in flight rats while the preosteoblasts increased compared to controls. Many of the results suggest that the animals were beginning to recover from the effects of spaceflight during the two day interval between landing and euthanasia; flight effects, such as the vascular changes, did not appear to recover
Large-area submillimeter resolution CdZnTe strip detector for astronomy
We report the first performance measurements of a sub-millimeter CdZnTe strip detector developed as a prototype for space-borne astronomical instruments. Strip detector arrays can be used to provide two-dimensional position resolution with fewer electronic channels than pixellated arrays. Arrays of this type and other candidate technologies are under investigation for the position-sensitive backplane detector for a coded-aperture telescope operating in the range of 30 - 300 keV. The prototype is a 1.4 mm thick, 64 multiplied by 64 stripe CdZnTe array of 0.375 mm pitch in both dimensions, approximately one square inch of sensitive area. Pulse height spectra in both single and orthogonal stripe coincidence mode were recorded at several energies. The results are compared to slab- and pixel-geometry detector spectra. The room-temperature energy resolution is less than 10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio greater than 5:1. The response to photons with energies up to 662 keV appears to be considerably improved relative to that of previously reported slab and pixel detectors. We also show that strip detectors can yield spatial and energy resolutions similar to those of pixellated arrays with the same dimensions. Electrostatic effects on the pulse heights, read-out circuit complexity, and issues related to design of space borne instruments are also discussed
Development of an orthogonal-stripe CdZnTe gamma radiation imaging spectrometer
We report performance measurements of a sub-millimeter resolution CdZnTe strip detector developed as a prototype for astronomical instruments operating with good efficiency in the 30-300 keV photon energy range. The prototype is a 1.4 mm thick, 64×64 contact stripe CdZnTe array of 0.375 mm pitch in both dimensions. Pulse height spectra were recorded in orthogonal-stripe coincidence mode which demonstrate room-temperature energy resolution \u3c10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio \u3e5:1. Good response is also demonstrated at higher energies using a coplanar grid readout configuration. Spatial resolution capabilities finer than the stripe pitch are demonstrated. We present the image of a 133Ba source viewed through a collimator slit produced by a 4×4 stripe detector segment. Charge signals from electron and hole collecting contacts are also discussed
Characteristic molecular properties of one-electron double quantum rings under magnetic fields
The molecular states of conduction electrons in laterally coupled quantum
rings are investigated theoretically. The states are shown to have a distinct
magnetic field dependence, which gives rise to periodic fluctuations of the
tunnel splitting and ring angular momentum in the vicinity of the ground state
crossings. The origin of these effects can be traced back to the Aharonov-Bohm
oscillations of the energy levels, along with the quantum mechanical tunneling
between the rings. We propose a setup using double quantum rings which shows
that Aharonov-Bohm effects can be observed even if the net magnetic flux
trapped by the carriers is zero.Comment: 16 pages (iopart format), 10 figures, accepted in J.Phys.Cond.Mat
CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers
We report γ-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for γ-ray measurements in the range of 20-600 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals. We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes
- …