859 research outputs found

    A computer program for the calculation of laminar and turbulent boundary layer flows

    Get PDF
    The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes

    Modified NASA-Lewis chemical equilibrium code for MHD applications

    Get PDF
    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view

    Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

    Get PDF
    We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earth's dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earth's polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.Comment: 46 pages, 7 figures, abstract abridged here, accepted to Journal of Geophysical Research - Space Physic

    Flow Development and Analysis of MHD Generators and Seawater Thrusters

    Get PDF
    The flow characteristics inside magnetohydrodynamic (MHD) Introduction Extensive work has been done on channel flow inside opencycle MHD plasma generators (e.g., The literature on MHD channel flow for plasma open-cycle generators indicate that the flow and electrical fields in MHD generators are inherently three-dimensional for a variety of reasons. The interaction of the MHD electrical forces (J X B) with the fluid flow leads to flow distortions Ahluwalia,1982, 1983

    Chromatic Dynamics of an Electron Beam in a Plasma Based Accelerator

    Full text link
    We present a theoretical investigation of the chromatic dynamics of the witness beam within a plasma based accelerator. We derive the single particle motion of an electron in an ion column within a nonlinear, blowout wake including adiabatic dampening and adiabatic variations in plasma density. Using this, we calculate the evolution of the beam moments and emittance for an electron beam. Our model can handle near arbitrary longitudinal phase space distributions. We include the effects of energy change in the beam, imperfect wake loading, initial transverse offsets of the beam, and mismatch between the beam and plasma. We use our model to derive analytic saturation lengths for the projected, longitudinal slice, and energy slice emittance under different beam loading conditions. Further, we show that the centroid oscillations and spot sizes vary between the slices and the variation depends strongly on the beam loading. Next, we show how a beam evolves in a full plasma source with density ramps and show that the integral of the plasma density along the ramp determines the impact on the beam. Finally, we derive several simple scaling laws that show how to design a plasma based injector to produce a target beam energy and energy spread.Comment: 17 pages, 10 figure

    Genome-wide data reveal cryptic diversity and genetic introgression in an Oriental cynopterine fruit bat radiation

    Get PDF
    Sampling details consisting of information about number of individuals typed for each marker. Populations with mutiple sampling points are represented by one representative coordinate. FA = forearm length, EL = ear length and TIB = tibia length. All morphological measurements are recorded in millimeters (mm). (XLSX 13 kb

    The importance of initial-final state correlations for the formation of fragments in heavy ion collisions

    Get PDF
    Using quantum molecular dynamics simulations, we investigate the formation of fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV. After a comparison with existing data we investigate some observables relevant to tackle equilibration: dsigma/dErat, the double differential cross section dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very central reactions, none of our simulations gives evidence that the system passes through a state of equilibrium. Later, we address the production mechanisms and find that, whatever the energy, nucleons finally entrained in a fragment exhibit strong initial-final state correlations, in coordinate as well as in momentum space. At high energy those correlations resemble the ones obtained in the participant-spectator model. At low energy the correlations are equally strong, but more complicated; they are a consequence of the Pauli blocking of the nucleon-nucleon collisions, the geometry, and the excitation energy. Studying a second set of time-dependent variables (radii, densities,...), we investigate in details how those correlations survive the reaction especially in central reactions where the nucleons have to pass through the whole system. It appears that some fragments are made of nucleons which were initially correlated, whereas others are formed by nucleons scattered during the reaction into the vicinity of a group of previously correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in Physical Review

    Expanding the Repertoire of Natural Product-Inspired Ring Pairs for Molecular Recognition of DNA

    Get PDF
    A furan amino acid, inspired by the recently discovered proximicin natural products, was incorporated into the scaffold of a DNA-binding hairpin polyamide. While unpaired oligomers of 2,4-disubstituted furan amino acids show poor DNA-binding activity, furan (Fn) carboxamides paired with N-methylpyrrole (Py) and N-methylimidazole (Im) rings demonstrate excellent stabilization of duplex DNA as well as discrimination of noncognate sequences, consistent with function as a Py mimic according to the Py/Im polyamide pairing rules

    Collective Flow from the Intranuclear Cascade Model

    Get PDF
    The phenomenon of collective flow in relativistic heavy ion collisions is studied using the hadronic cascade model ARC. Direct comparison is made to data gathered at the Bevalac, for Au+Au at p=12p=1-2 GeV/c. In contrast to the standard lore about the cascade model, collective flow is well described quantitatively without the need for explicit mean field terms to simulate the nuclear equation of state. Pion collective flow is in the opposite direction to nucleon flow as is that of anti-nucleons and other produced particles. Pion and nucleon flow are predicted at AGS energies also, where, in light of the higher baryon densities achieved, we speculate that equation of state effects may be observable.Comment: 9 pages, 2 figures include
    corecore